
Ex:

Make a consistency check on the above node-voltage equations for the circuit by setting resistors and sources to values for which the values of v_1 , v_2 , and v_3 are obvious. State the values of resistors, sources, and v_1 , v_2 , v_3 for your consistency check, and show that the node-voltage equations are satisfied for these values. (In other words, plug the values into the node-voltage equations and show that they yield values of zero Amps.)

soln: Many consistency checks are possible.

One possible is to set $i_{52} = 0A$ and $\alpha = 0$. Let $i_5 = 6A$ and set $R_1 = 1.12$, $R_2 = 2.52$, ..., $R_5 = 5.52$.

With $\alpha = 0$, our v-src becomes a wire. With $i_{52} = 0$ A we have an open circuit where i_{52} is located.

All the current will flow thru the wire between v_i and v_3 , (path of least resistance).

The 6A flows thru $R_2 + R_4$, giving V-drop of $6A \cdot (2\Omega + 4\Omega) = 36V$ from reference to V_1 .

Thus, $v_1 = -36V$. $v_3 = v_1 = -36V$ (wire connects v_1 to v_3)

Also, $v_2 = v_3 = -36V$ (ov across R_3 ; no current)

Now we plug our component values and v_1, v_2, v_3 values into the node-voltage egins to see if the egins are valid, (i.e. that left side of egin = right side of egin).

$$-36V\left(\frac{1}{1\Omega} + \frac{1}{2\Omega + 4\Omega}\right) - (-36V)\left(\frac{1}{3\Omega} + \frac{1}{1\Omega}\right) + (-36V) \pm \frac{1}{3\Omega}$$

$$+ 6A$$

Now we check 2nd egin.

$$-36V - (-36V) \stackrel{?}{=} 0 \cdot (-36V) \frac{70}{4x}$$

$$= 0 = 0 \quad \checkmark$$

Now we check 3rd egn.

$$-(-36V)(1)+(-36V)(1+1)-(-36V)+OA$$

$$= OAV$$

This check worked. In practice we would perform others.