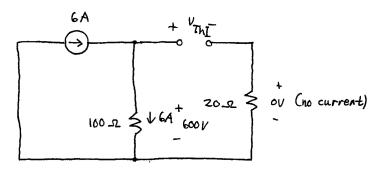

Ex:

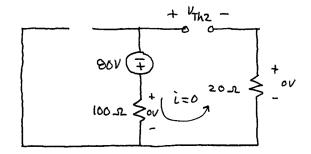
- a) Calculate the value of R_L that would absorb maximum power.
- b) Calculate that value of maximum power R_L could absorb.

Turn off sources, remove R_L , and look into circuit from R_L terminals to find R_{Th} .



b) max pwr =
$$\left(\frac{V_{Th}}{2}\right)^2$$
 from Ther equiv with $R_L = R_{Th}$. (R_L sees $V = \frac{V_{Th}}{2}$.)

 $V_{Th} = V$ across R_L terminal with R_L removed.


Use superposition to find vTh.

case I: 6A on, 80V off

VTh1 = V across 100 Sc resistor = 6A.100 Sc

case II: 6A off, BOV on

We have no current no V drop across R'\$. The 80V appears as $-V_{Th2}$ across the terminals. $V_{Th2} = -80V$.

VTh = VTh1 + VTh = 600-80 V = 520 V

$$P_{\text{max}} = \left(\frac{520}{2}\right)^2 / R_{\text{Th}} = \left(\frac{520}{2}\right)^2 / 120 \Omega = \frac{1690}{3} W = 563.3W$$