
Ex:

For the circuit shown, write three independent equations for the three mesh currents i_1 , i_2 , and i_3 . The quantity i_x must not appear in the equations.

soln: First, we express i_x in terms of mesh currents. Since i_x is on the outer edge of the circuit, it is equal to the mesh current i_3 :

$$i_X = i_3$$

Second, we examine the inloop and find that the dependent source is on the outside edge. Thus, $dix = i_1$. Substituting for i_x gives an equation for i_1 :

(1)
$$i_1 = i_3$$

Third, we examine the iz loop and find that the current source, is, between the iz and is loops means we have an iz, is super mesh.

The v-loop for the iz, iz super mesh is

(2)
$$V_{52} - i_2 R_3 - V_{53} = OV$$

Note: The problem asks only for circuit eg'ns, but we could easily solve for iz:

$$i_2 = \frac{v_{52} - v_{53}}{R_3}$$

Fourth, we write an egh for the is source between the iz and iz loops.

(3)
$$i_5 = i_3 - i_2$$

Note that i_3 flows in the same direction as i_5 and i_2 flows opposite the direction of the arrow for i_5 .

The eg'ns numbered (1), (2), and (3) are independent, (meaning we could solve them to find i_1 , i_2 , and i_3 .