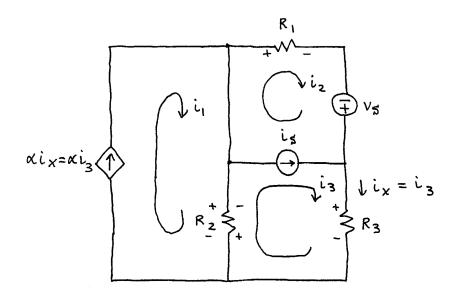

Ex:

For the circuit shown, write three independent equations for the three mesh currents, i_1 , i_2 , and i_3 . The quantity i_x must not appear in the equations.


soln: We first write ix in terms of mesh currents.

Since i_x is a current on the outside edge of the circuit, (flowing thru R_3), it is equal to the mesh (also called "loop") current.

$$i_X = i_3$$

Next we look for super meshes where a current src is between two loops. We have a supermesh for i_2 , i_3 with is in between.

We draw the circuit model before writing our egis.

 i_2, i_3 loop: $-i_3 R_2 + i_1 R_2 - i_2 R_1 - i_3 R_3 = OV$ (supermesh uses loop around right half of circuit)

We add a current eg'n for is src between loops.

 $i_{\beta} = i_3 - i_2$ (iz has - sign because it is measured in direction opposite to direction of i_{β})

Finally, for the i_1 loop we encounter a curious situation. Since we have a current source on the outside edge of the circuit, we must have that $i_1 = current$ for src.

Thus, i, = xi3. This is the egn for i.

We now have 3 eghs in i_1, i_2, i_3 which we could solve to find $i_1, i_2,$ and i_3 .