
By: Neil E. Cotter

CIRCUITS NODE-VOLTAGE METHOD Dependent sources EXAMPLE 4

Ex:

For the circuit shown, write three independent equations for the node-voltages, v_1 , v_{2} , and v_3 . The quantity v_x must not appear in the equations.

sol'n: We first write vx in terms of node-V's.

We use a v-divider since we have v_1 across R_2 in series with R_4 : + V_1 $R_2 > V_X = V_1 \cdot \frac{R_4}{R_2 + R_4}$ + $R_4 > V_X$ - -

We have a $V-\operatorname{src}$ connecting v_1 to v_3 . So v_1, v_3 form a supernode. We write a current summation eg'nfor v_{1}, v_3 . We find sum of its flowing out of bubble containing v_{1}, v_{3} , and the dependent V-prc.

(1)
$$v_{1}v_{3}$$
 node: $v_{1}-v_{2} + v_{1}-ov + v_{3}-v_{2} + is_{1} = 0A$
 R_{1} $R_{2}+R_{4}$ R_{3}

we also write a voltage eg'n for v_1 and v_3 . Note that we substitute for v_x to obtain an eg'n containing only node voltages.

(2)
$$V_1 = V_3 + \alpha \left(V_1 \frac{R_4}{R_2 + R_4} \right)$$

For V2, we just sum currents out of node.

(3)
$$V_2 \text{ node: } \frac{V_2 - V_1}{R_1} + \frac{V_2 - V_3}{R_3} + \frac{V_3}{R_3} = 0A$$

we now have our 3 egis for V1, V2, and V3.