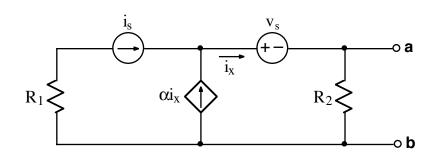
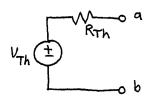
THÉVENIN EQUIVALENT
Dependent sources
EXAMPLE 2

Ex:



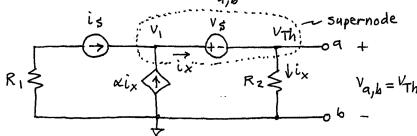
Find the Thevenin's equivalent circuit at terminals a-b. i_x must not appear in your solution. **Note:** $\alpha \ne 1$.

soln: We must find v_{th} and R_{th} for the Thevenin equivalent circuit that has the same behavior as the above circuit when viewed from a,b terminals.



 $V_{Th} = V_{a,b}$ for circuit with nothing connected across a,b.

We can use node- ν method or another method of our choice to find $\nu_{a,b}$



We first define ix in terms of node voltagest. Here, ix flows thru R_z . Thus ix = $\frac{V_{Th}}{R_z}$.

We have a supernode for v, and vTh.

So we sum currents out of a bubble around v_i , v_{Th} , and v_{S} .

$$v_{1}, v_{Th} \text{ node}: -\hat{\iota}_{S} - \alpha v_{Th} + v_{Th} = 0A$$

We could continue on to write a voltage egh for V_1 and V_{Th} : $V_1 = V_{Th} + V_{S}$

But our first eg'n has only V_{Th} in it; we can solve the first eg'n for V_{Th} and stop there.

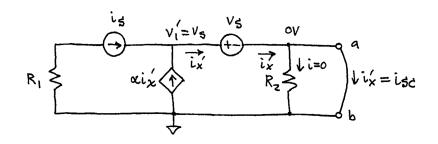
Rearranging gives
$$V_{Th} \left(\frac{L}{R_2} - \frac{\kappa}{R_2} \right) = is$$

or $V_{Th} = \frac{is R_2}{1-\alpha}$

To find R_{Th} , we can use the method of shorting out a and b and measuring the current in the wire. This is is for ishort sircuit. If we look at a Thevenin

equivalent circuit with a wire from a to b, we have current isc = $\frac{V_{Th}}{R_{Th}}$.

We redraw our circuit with a wire from a to b.



This is a different circuit than before. We have ov at a, (instead of V_{Th}), and no current flows in R_2 since it is bypassed by a wire. Also, isc = i_x .

We also have $v_1 = ov + v_3 = v_3$, Circuit is solved. or is it? We still need to find isc = i_x'

Using a current summation at vi, we have

$$-i_{5} - \alpha i_{x}' + i_{x}' = OA$$
or
$$i_{x}' (1-\alpha) = i_{5}$$
or
$$i_{x}' = \frac{i_{5}}{1-\alpha} = i_{5}c$$

Using
$$R_{Th} = \frac{v_{Th}}{i_{SC}}$$
 gives $R_{Th} = \frac{i_{S}R_{Z}}{i_{-\infty}}$ $\frac{i_{S}}{i_{-\infty}}$

or $R_{Th} = R_z$ (Nothing else plays a role in R_{Th} .)

Consistency check: Set $\kappa = 0 \Rightarrow$ dependent src=open. Then R_1 , v_s in series with current src is irrelevant. We have Norton equiv, is and R_2 : $V_{Th} = \hat{l}_s R_2$, $R_{Th} = R_2 V$