Tool: The imaginary number j (or for mathematicians, i) has the following 10 uses.
TOOL 9: $j=\sqrt{-1}$ allows us to take the square root of negative numbers.

$$
j=\sqrt{-1} \quad j^{2}=-1 \quad \frac{1}{j}=-j
$$

Tool 8: j allows us to write values of all roots of polynomials as complex numbers. polynomial roots all of form $a+j b$
Tool 7: j creates a second "imaginary" axis perpendicular to the real axis, meaning complex numbers are vectors.

$$
j=\text { token indicating vertical part of complex number vector }
$$

TOOL 6: j defines a rule for multiplying 2-dimensional vectors to obtain a 2-dimensional vector, (unlike dot product $=$ scalar, and cross product $=3$-dimensional vector).

$$
(a+j b)(c+j d)=a c-b d+j(a d+b c)
$$

TOOL 5: j placed in front of a complex number (i.e., multiplying by j), rotates the complex number vector by 90°.

$$
j(a+j b)=-b+j a \quad(a, b) \circ(-b, a)=0
$$

Tool 4: j allows us to use complex exponentials to write trigonometric functions.

$$
e^{j \phi}=\cos \phi+j \sin \phi \quad \cos \phi=\frac{e^{j \phi}+e^{-j \phi}}{2}
$$

Tool 3: j allows us to shift Real $\cos \phi$ and Imaginary $\sin \phi$ to Real $-\sin \phi$ and Imaginary $\cos \phi$, a phase shift of 90°.

$$
j e^{j \phi}=j(\cos \phi+j \sin \phi)=-\sin \phi+j \cos \phi=\cos \left(\phi+90^{\circ}\right)+j \sin \left(\phi+90^{\circ}\right)
$$

Tool 2: $\quad j$ allows us to capture the magnitude and phase of a sinusoid as a complex exponential called a "phasor".

$$
P[A \cos (\omega t+\phi)]=A e^{j \phi}
$$

TOOL 1: j in phasors allows us to sum trigonometric functions without identities.

$$
A \cos (\omega t+\phi)+B \sin (\omega t+\theta)=P^{-1}\left[A e^{j \phi}-j B e^{j \theta}\right]
$$

TOOL 0: j in phasors allows us to write derivatives as multiplication by $j \omega$.

$$
P[A \cos (\omega t+\phi)]=A e^{j \phi} \quad P\left[\frac{d}{d t} A \cos (\omega t+\phi)\right]=j \omega \cdot A e^{j \phi}
$$

