
Ohm's law (resistors)

V =
$$I \cdot R$$
 $I = \frac{V}{R}$ $V = \frac{V}{I \cdot R}$ $V = \frac{V}{I}$ definition of resistance and the unit " Ω "

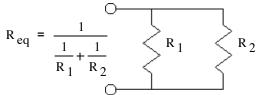
Series Resistors

Resistors are in series if and only if exactly the same current flows through each resistor.

Voltage Divider

series:
$$R_{eq} = R_1 + R_2 + R_3 + \dots$$
 Exactly the same current through each resistor

Voltage divider:


$$V_{Rn} = V_{total} \frac{R_n}{R_1 + R_2 + R_3} + \dots$$

Parallel Resistors

$$V_{S} = \begin{bmatrix} I_{1} & V_{S} \\ \hline + & V_{S} \\ \hline \hline - & R_{1} \end{bmatrix} V_{2} = \frac{V_{S}}{R_{1}}$$

$$I_{T} = \frac{V_{S}}{R_{1}} + \frac{V_{S}}{R_{2}}$$

$$R_{eq} = \frac{V_{S}}{I_{T}} = \frac{V_{S}}{\frac{V_{S}}{R_{1}} + \frac{V_{S}}{R_{2}}} = \frac{1}{\frac{1}{R_{1}} + \frac{1}{R_{2}}}$$

Resistors are in parallel if and only if the same voltage is across each resistor.

Current Divider

parallel:
$$R_{eq} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots}$$

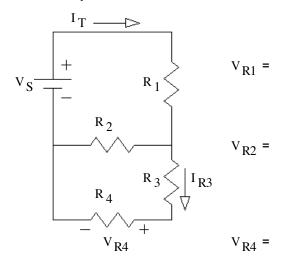
$$I_{total}$$

$$R_1 \Rightarrow R_2 \Rightarrow R_3$$


Exactly the **same** voltage across each resistor

current divider:

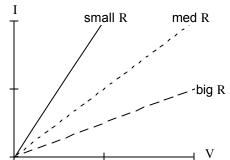
$$I_{Rn} = I_{total} \cdot \frac{\frac{1}{R_n}}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots}$$


ECE 1250 Lectures 2 - 4 notes p1

Series and Parallel

All resistor-only networks can be reduced to a single equivalent, but not always by means of series and parallel concepts.

Dividers May have to combine some resistors first to get series and parallel resistors to use with divider expressions.



$$I_T =$$

$$I_{R3} =$$

Resistors

ECE 1250 Lectures 2 - 4 notes p3

$$R = \frac{1}{\text{slope}} = \frac{\Delta V}{\Delta I}$$

Power

flow
$$\frac{m^3}{sec}$$

flow x pressure:
$$\frac{\text{m}^3}{\text{sec}} \cdot \frac{\text{N}}{\text{m}^2} = \frac{\text{m}}{\text{sec}} \cdot \frac{\text{N}}{1} = \frac{\text{N} \cdot \text{m}}{\text{sec}} = \frac{\text{Joule}}{\text{sec}} = \text{W} = \text{power}$$

$$\frac{\text{N} \cdot \text{m}}{\text{agg}} = \frac{\text{Joule}}{\text{agg}} =$$

same for electricity

 $P = I \cdot V$ power

Power dissipated by resistors:

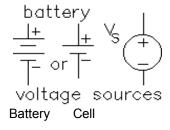
$$P = V \cdot I = \frac{V^2}{R} = I^2 \cdot R$$

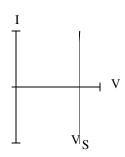
For the divider example on the last page:

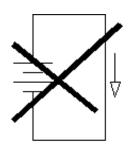
$$P_S = V_S \cdot I_T =$$

$$P_{R1} = \frac{V_{R1}^2}{R_1} =$$

$$P_{R2} =$$

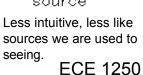

$$P_{R3} = I_{R1}^2 \cdot R_1 =$$

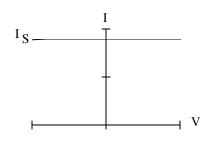

$$P_{R3} =$$

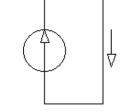

How much energy does R₃ dissipate in 36 seconds?

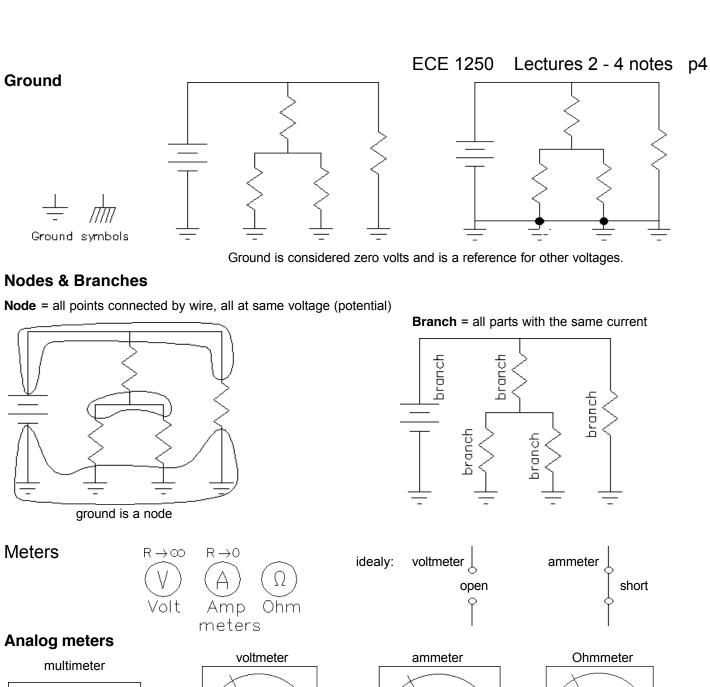
$$P_{R4} =$$

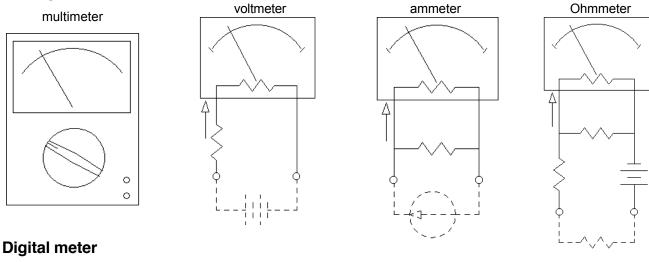
Sources






Doesn't make sense for ideal voltage sources and ideal wires





Must have a path for the current to flow

Doesn't make sense for ideal current sources

Lectures 2 - 4 notes p3

Sample

and Hold

Analog to

Converter

Display

Digital

ECE 1250 Lectures 2 - 4 notes p4

Input &

Selection

Range

Probes