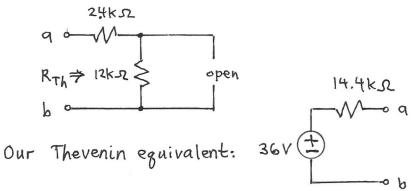

U

3.




- a) Find the Thevenin equivalent of the above circuit (without  $R_L$ ).
- b) Find the power supplied by the current source when  $R_L$  is Not connected.

sol'n: a) 
$$V_{Th} = V_{a,b}$$
 with no  $R_L$ 
 $A \circ V_{Th}$ 
 $V_{Th}$ 
 $V_{Th}$ 

The 24ks carries no current and has no V-drop. Also, all the current from the i-src must flow thru the 12ks. So  $V_{Th}$  equals the V-drop across the 12ks, and the V-drop across the 12ks.

We find  $R_{Th}$  by turning off the i-src and looking in from a, b.  $R_{Th} = 12k\Omega + 24k\Omega = 14.4k\Omega$ .



b) When R<sub>L</sub> is not present, there is no current in the 2.4 ks resistor and no power consumed by it. The power supplied by the current source is the power consumed by the 12 ks resistor. From part (a), we know that 3 mA flows in the 12 ks, so we have the power from I<sup>2</sup>R: