
 1250 Laboratory Project M4:
Creating Sound Effects

Abstract-You will create script and function files to implement various sound
effects based on modifying samples or a sound's spectrum. You will also create a
unique sound effect of your own design.

I. PREPARATION

Read Matlab Primer Chapter 5 pages 5-1 to 5-13, and 5-16 to 5-17.

II. LEARNING OBJECTIVES

1) Use a switch command
2) Use for loops
3) Write function files
4) Use fft (Fast Fourier Transform) command to create spectrum of sound
5) Understand the effects of modifying a spectrum

III. PROCEDURE

A. Lab Report
In this lab, you will write several script and function files. At the conclusion of the lab, send

your TA an email whose body is the contents of all these script files (except the final sound
effect) and other information as specified below. That is, put all the script and function file
contents together, and put them in the body of the email unless the TA instructs you to do
otherwise. Use comments in your files to identify them and how they work.

Show your files (lab report) to your TA before leaving the lab.
B. Sound Effects based on Magnitudes of Samples

Create a script file called clipping.m for this part of the lab. This script file will process a
sound waveform based on the values of the samples in the waveform and apply one of several
different sound effects, depending on the value of a string variable called effect. Write
clipping.m to do the following:

1) Load the handel sound, (which by default will be placed in the variable y)
2) Shorten y to two seconds of sound (where sampling rate is 8000 samples/sec)
3) Use a switch statement that branches according to the string variable called effect
4) If the value of effect is 'clip', set all sound samples greater than 0.1 to 0.1 and samples

less than –0.1 to –0.1, and play the sound
5) If the value of effect is 'squish', delete all sound samples that are greater than 0.2 or

less than –0.2, and play the sound
6) If the value of effect is 'rectify', set all sound samples less than 0 to 0, and play the

sound
7) If the value of effect is 'sine_mask', set samples to the larger (in magnitude) of two

waveforms: the sound in y, and a 100 Hz sinusoid of magnitude 0.2
8) If the value of effect is not recognized as one of the above terms, display the message

"unsupported effect".

C. Sound Effect based on Median Filter
Create a script file called medfilter.m that uses a "for" loop to step through a sound snippet

stored in y and extract "nsamps" (choose a small integer) at a time, and process them as
follows: find the median value of the snippet and replace all samples with the median value.
Use an "if" statement to check for nsamp < 2, which is an error (causing display of an
appropriate message and an early return).

Note: it may be helpful to use concatenation such as yout = [yout, ymed]; to add samples
at the end of the output array each time through the "for" loop.
D. Sound Effect based on Repeated Samples

Create a function file (not a script file) called rep.m that has the following input variables:
% invec input sound array
% start_samp sample number where repeated sound will start
% rep_size size in samples of repeated sample
rep.m will output a variable called outvec containing the sound array with a section of

repeated samples inserted in it. The result will be a reverberation or stuttering effect. Use
rep.m to create an interesting sound effect, and play it for your TA.
E. Sound Effect based on Echoes

Create a function file (not a script file) called echoes.m that has the following input variables:
% invec input sound array
% echo_delay number of samples after which echo starts
% echo_size loudness of echo relative to original (1.0 means equally loud)
echoes.m will output a variable called outvec containing the sound array with echoes in it.

The output sound is constructed by adding copies of the original sound scaled by echo_size
and delayed by echo_delay samples. Recall that 8000 samples equals one second. To avoid
creating an overly loud sound, scale the final output sound by scaling it so the median value is
the same as it was before the echoes were added.
F. Sound Effect based on Spectrum

Create a function file (not a script file) called spechange.m that has the following input
variable:
% invec input sound array
spechange.m will output a variable called outvec containing the input sound array with an

altered spectrum. Your function must first compute the fft (Fast Fourier Transform) or
spectrum of the input sound array. Then your function will alter the spectrum in some way.
The spectrum presents the sound in terms of its frequency content. The first half of the
spectrum computed by the fft command contains all the frequency information for the signal.
The second half is redundant. It is equal to complex conjugate of the first half in reverse order.
Altering samples at the beginning and end of the spectrum affects the low frequencies in the
sound. Altering samples in the middle of the spectrum affects the high frequencies in the
sound.

The spectrum has complex values. These complex values are just like phasors. They encode
the magnitudes and phase shifts of the sinusoids in the sound. They are in the format a + j*b,
however. You can convert to magnitude and phase by using sqrt and atan2. This may be
helpful if you decide to process the spectrum based on magnitudes or phase shifts.

After you have altered the spectrum, use ifft to convert the spectrum back into a time-
domain waveform. Since the fft is complex and your alterations to the sound's spectrum may
not result in ifft being real, you will probably need to apply the real function to your final
sound array. Note: when plotting complex values, you can apply the abs function.

G. Original Sound Effect
Create a function file (not a script file) called effect.m that implements a unique sound effect

of your own design.
% invec input sound array
% echo_delay number of samples after which echo starts
% echo_size loudness of echo relative to original (1.0 means equally loud)
effect.m will output a variable called outvec containing the input sound with your sound

effect applied to it. Note that your function must work with any input sound. Include
comments in your file to describe the purpose of each line of code.

You will likely finish your sound effect outside the lab period. When it is finished, send it to
your TA in whatever format the TA specifies.

REF: [1] The Mathworks, Inc, Matlab® Primer, Natick, MA: The Mathworks, Inc, 2012.

