DERIV: The 2-pole low-pass filter magnitude response

$$
|H(j \omega)|=\frac{1}{\left|\left(\frac{j \omega}{\omega_{0}}\right)^{2}+\frac{1}{Q}\left(\frac{j \omega}{\omega_{0}}\right)+1\right|}
$$

has a resonant peak for high Q.
The resonant peak, $|H|_{\max }$ is at a different frequency, ω_{m}, close to but different than the resonant frequency, ω_{0}. To find ω_{m}, we use the idea from calculus that the maximum occurs where the derivative of a function is zero.

$$
\frac{d}{d \omega}|H(j \omega)|=0
$$

To simplify the calculation, we use magnitude squared. The peak of the magnitude squared will occur at the same frequency as the peak of the magnitude.

$$
\frac{d}{d \omega}|H(j \omega)|^{2}=0
$$

or

$$
0=\frac{d}{d \omega}|H(j \omega)|^{2}=\frac{d}{d \omega} \frac{1}{\left|\left(\frac{j \omega}{\omega_{0}}\right)^{2}+\frac{1}{Q}\left(\frac{j \omega}{\omega_{0}}\right)+1\right|^{2}}
$$

or, taking the sum of the squares of the imaginary and real parts,

$$
0=\frac{d}{d \omega} \frac{1}{\left[-\left(\frac{\omega}{\omega_{0}}\right)^{2}+1\right]^{2}+\frac{1}{Q^{2}}\left(\frac{\omega}{\omega_{0}}\right)^{2}}
$$

We define a convenient, normalized, squared frequency term for the remainder of the calculation.

$$
\mathrm{w} \equiv\left(\frac{\omega}{\omega_{0}}\right)^{2}
$$

$$
0=\frac{d}{d \omega} \frac{1}{(-w+1)^{2}+\frac{1}{Q^{2}} \mathrm{w}}
$$

or

$$
0=\frac{d}{d \omega}\left[(-\mathrm{w}+1)^{2}+\frac{1}{Q^{2}} \mathrm{w}\right]^{-1}
$$

or

$$
0=-\left[(-\mathrm{w}+1)^{2}+\frac{1}{Q^{2}} \mathrm{w}\right]^{-2} \frac{d}{d \omega}\left[(-\mathrm{w}+1)^{2}+\frac{1}{Q^{2}} \mathrm{w}\right]
$$

The denominator term must not be zero, so the term to the -2 power may be ignored.

$$
0=\frac{d}{d \omega}\left[(-\mathrm{w}+1)^{2}+\frac{1}{Q^{2}} \mathrm{w}\right]=2(-\mathrm{w}+1)(-1)+\frac{1}{Q^{2}}
$$

or

$$
\mathrm{w}-1=-\frac{1}{2 Q^{2}}
$$

or

$$
\mathrm{w}=1-\frac{1}{2 Q^{2}}
$$

or

$$
\left(\frac{\omega_{\max }}{\omega_{0}}\right)^{2}=1-\frac{1}{2 Q^{2}}
$$

or, for the exact result,

$$
\frac{\omega_{\max }}{\omega_{0}}=\sqrt{1-\frac{1}{2 Q^{2}}}
$$

For small x, we have the following Taylor series expansion.

$$
\sqrt{1-x}=1-\frac{x}{2}+O\left(x^{2}\right)
$$

Thus, for high Q, we have the following approximation.

$$
\frac{\omega_{\max }}{\omega_{0}} \approx 1-\frac{1}{4 Q^{2}}
$$

For $Q>4$, the approximation is extremely accurate. However, $\omega_{\max }$ is approximately ω_{0} for $Q>4$ anyway, so the approximation has limited value. The following table lists some values in the useful range of Q. Note that there is no peak in the frequency response for $Q<1 / \sqrt{2} \doteq 0.707$.

$\zeta=\frac{1}{2 Q}$	Q	$\frac{\omega_{\max }}{\omega_{0}}=\sqrt{1-\frac{1}{2 Q^{2}}}$	$\log _{10}\left(\frac{\omega_{\text {max }}}{\omega_{0}}\right)$	$\frac{\omega_{\max }}{\omega_{0}} \approx 1-\frac{1}{4 Q^{2}}$	\% approx err
0.667	0.75	0.333	-0.48	0.56	66.67
0.625	0.8	0.468	-0.33	0.61	30.29
0.556	0.9	0.619	-0.21	0.69	11.75
0.500	1	0.707	-0.15	0.75	6.07
0.250	2	0.935	-0.03	0.94	0.22
0.167	3	0.972	-0.01	0.97	0.04
0.125	4	0.984	-0.01	0.98	0.01
0.100	5	0.990	0.00	0.99	0.01
0.100	5.00	0.990	0.00	0.99	0.01
0.200	2.50	0.959	-0.02	0.96	0.09
0.300	1.67	0.906	-0.04	0.91	0.49
0.400	1.25	0.825	-0.08	0.84	1.86
0.500	1.00	0.707	-0.15	0.75	6.07
0.600	0.83	0.529	-0.28	0.64	20.95
0.700	0.71	0.141	-0.85	0.51	260.62

Filters
Bode Plots
2-pole low-pass
Peak resp freq derivation (cont.)

REF: Wolfram Alpha (Taylor series)

https://www.wolframalpha.com/input/?i=taylor+series+\(1x $\% 29 \% 5 \mathrm{E} 1 \% 2 \mathrm{~F} 2$ accessed 11/15/2020.

