EX:

a. Choose values of L and C that will produce an ω_{O} of $2 \pi \cdot 10^{4}$ and a Q of 2 .
b. Calculate $\beta, \omega_{\mathrm{c} 1}$, and $\omega_{\mathrm{c} 2}$.

ANS: a) $\mathrm{L}=3.2 \mathrm{mH}, \quad \mathrm{C}=80 \mathrm{nF}$
b) $\beta=31.4 \mathrm{k} \mathrm{rad} / \mathrm{s}, \omega_{\mathrm{C} 1}=49.1 \mathrm{k} \mathrm{rad} / \mathrm{s}, \omega_{\mathrm{C} 2}=80.5 \mathrm{k} \mathrm{rad} / \mathrm{s}$

SOL'N: a) This is a band reject filter with the following output:

$$
\mathbf{V}_{\mathrm{O}}=\mathbf{V}_{i} \underbrace{\frac{j \omega L+\frac{1}{j \omega C}}{R+j \omega L+\frac{1}{j \omega C}}}_{\mathrm{H}(\mathrm{j} \omega)} \text { (V-divider) }
$$

The series L and C will act like a wire at the resonant frequency ω_{0} and an open circuit for $\omega=0$ (where C acts like an open circuit) and $\omega \rightarrow \infty$ (where L acts like an open circuit):
$|H(j \omega)|=\left\{\begin{array}{l}\infty / \infty=1 \text { at } \omega=0 \text { or } \omega \rightarrow \infty \\ 0 \text { at } \omega=\omega_{0} \text { where } j \omega L=\frac{-1}{j \omega C}\end{array}\right.$
The resonant frequency is found, as always, by solving for the frequency, ω_{0}, where the impedance of the L plus the impedance of the C equals zero:
$\omega_{\mathrm{o}}=\sqrt{\frac{1}{L C}}$
From the course text, we have an equation for the Q of this particular filter circuit:
$Q=\sqrt{\frac{L}{R^{2} C}}$
(If necessary, we could also find Q by determining the cutoff frequencies where $|H(j \omega)|=1 / \sqrt{ } 2$. The difference of the cutoff frequencies is the bandwidth, β, and $\omega_{0} / \beta=\mathrm{Q}$.)
Using the equations for ω_{O} and Q , we do some algebra to find C :
$\omega_{\mathrm{o}} Q=\sqrt{\frac{1}{L C}} \sqrt{\frac{L}{R^{2} C}}=\frac{1}{R C} \quad$ or $\quad C=\frac{1}{R \omega_{\mathrm{o}} Q}$
Plugging in values given in the problem, we have

$$
C=\frac{1}{100 \Omega \cdot 2 \pi \cdot 10^{4} / \mathrm{s} \cdot 2}=\frac{1 \mathrm{~F}}{4 \pi \cdot 10^{6}}=\frac{1000}{4 \pi} \mathrm{nF}=79.6 \mathrm{nF} \approx 80 \mathrm{nF}
$$

Rearranging the equation for Q and using this value of C gives the value for L :
$Q=\sqrt{\frac{L}{R^{2} C}} \Rightarrow L=Q^{2} R^{2} C=4 \cdot 100^{2} \cdot 80 \mathrm{n}=320 \cdot 10 \mathrm{knH}$
or
$L=3200 \mu \mathrm{H}=3.2 \mathrm{mH}$
SOL'N: b) From the course text or calculations of cutoff frequencies as described above, we have equations for cutoff frequencies that apply to simple RLC bandpass and bandreject filters:

$$
\omega_{C 1}=\omega_{\mathrm{o}}\left[-\frac{1}{2 Q}+\sqrt{1+\left(\frac{1}{2 Q}\right)^{2}}\right]
$$

$$
\omega_{C 2}=\omega_{\mathrm{o}}\left[\frac{1}{2 Q}+\sqrt{1+\left(\frac{1}{2 Q}\right)^{2}}\right]
$$

Summing the equations gives a formula for bandwidth, β :

$$
\begin{aligned}
& \beta \equiv \omega_{C 2}-\omega_{C 1}=\frac{\omega_{\mathrm{o}}}{Q} \\
& \therefore \quad \beta=\frac{2 \pi \cdot 10^{4}}{2}=\pi \cdot 10^{4} \mathrm{rad} / \mathrm{s}=31.4 \mathrm{k} \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

Now we compute $\omega_{\mathrm{C} 1}, \omega_{\mathrm{C} 2}$:

$$
\begin{aligned}
& \frac{1}{2 Q}=\frac{1}{4}, \quad \sqrt{1+\left(\frac{1}{2 Q}\right)^{2}}=\sqrt{\frac{17}{16}}=\frac{\sqrt{17}}{4} \\
& \omega_{C 1}=2 \pi \cdot 10^{4}\left(-\frac{1}{4}+\frac{\sqrt{17}}{4}\right)=\left(\frac{\sqrt{17}-1}{2}\right) \pi \cdot 10^{4}=49.1 \mathrm{k} \mathrm{rad} / \mathrm{s} \\
& \omega_{C 2}=2 \pi \cdot 10^{4}\left(+\frac{1}{4}+\frac{\sqrt{17}}{4}\right)=\left(\frac{\sqrt{17}+1}{2}\right) \pi \cdot 10^{4}=80.5 \mathrm{k} \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

Consistency check:

$$
\sqrt{\omega_{C 1} \cdot \omega_{C 2}}=\sqrt{49.1 \mathrm{k} \cdot 80.5 \mathrm{k}}=62.9 \mathrm{k}=2 \pi \cdot 10^{4}=\omega_{\mathrm{o}}
$$

