- **TOOL:** At a any particular frequency, ω_s , a circuit consisting of only L's and C's is equivalent to a single L or C.
- **LEMMA:** We may place an appropriate L or C in parallel or series with a circuit consisting of only L's and C's to create a resonance at any particular frequency, ω_s .
- **TOOL:** Given an L in <u>series</u> with a C with resonant frequency ω_{o} , at any particular frequency, ω_s , the L and C are equivalent to:
 - 1) A single C if $\omega_s < \omega_o$
 - 2) A wire if $\omega_s = \omega_o$
 - 3) A single L if $\omega_s > \omega_o$
- **TOOL:** Given an L in <u>parallel</u> with a C with resonant frequency ω_{o_1} at any particular frequency, ω_s , the L and C are equivalent to:
 - 1) A single L if $\omega_s < \omega_o$
 - 2) An open circuit if $\omega_s = \omega_o$
 - 3) A single C if $\omega_s > \omega_o$
- **COMMENT:** A circuit consisting of only L's and C's looks like a single L or C at one frequency, ω_s , because all the impedances are purely imaginary. Thus, the impedance of the entire circuit, z_{tot} , is purely imaginary.

If z_{tot} is positive imaginary, then $z_{tot} = j\omega_s L$ for some L.

If z_{tot} is negative imaginary, then $z_{tot} = -j/(\omega_s C)$ for some C.

TOOL: Summary of *LC* behavior:

LC	$\omega = 0$	$\omega < \omega_0$	$\omega = \omega_0$	$\omega > \omega_0$	$0 \rightarrow \infty$
series	– – (open)	-jX	— (wire)	jХ	– – (open)
parallel	(wire)	jХ	– – (open)	-jX	— (wire)