EX: $\quad$ Make calculations of $I Z \mid$ for enough values of $\omega$ that you can plot a good graph of $|Z|$ versus $\omega$ for each of the circuits shown in Figs. 1 and 2. Then vary the values of the components, and make enough further calculations that you can get a qualitative feel for how the size and shape of the curve depends on the parameters, without making numerical calculations. For example, if IZI versus $\omega$ is given for the circuit shown in Fig. 3, explain how the curve would change if R were doubled, with nothing else changed. Explain how the curve would change if $L$ were doubled, with nothing else changed.


Fig. 1

Fig. 3



Fig. 2

ANS: Fig. 1) plot of $|z|$ will be bowl-shaped with a minimum value of R at $\omega_{0}$.
Fig. 2) $|z|=\mathrm{R}=40 \Omega$ at $\omega=0$.
$|z|$ increases to a resonant peak of (approximate) height $k \mathrm{R}=6.25 \mathrm{k} \cdot 40 \Omega=250 \mathrm{k} \Omega$. The resonant frequency is $1 / \sqrt{ }(\mathrm{LC})=1 \mathrm{M} / \sqrt{ } 10 \mathrm{rad} / \mathrm{s}$.
$|z|$ then decreases toward 0 as $\omega \rightarrow \infty$.

Fig. 3) Double R: $|z|$ starts at twice the height but the resonant peak height is only half as high. The frequency of the resonant peak is unaffected. Double L, then the curve for $|z|$ still starts at height $R$ but the resonant peak height is about twice as high. The frequency of the resonant peak is lowered by a factor of $\sqrt{ } 2$.

SOL'N: Fig. 1) $\quad z=R+j \omega L+-j /(\omega C)=R+j[\omega L-1 /(\omega C)]$
$|z|^{2}=\mathrm{R}^{2}+[\omega \mathrm{L}-1 /(\omega \mathrm{C})]^{2}$
We may visualize $|z|$ as the length of the hypotenuse of a right triangle in the complex plane with sides of length $R$ and $[\omega \mathrm{L}-1 /(\omega \mathrm{C})]$.

At the resonant frequency of the L and $\mathrm{C}, \omega_{0}^{2}=1 /(\mathrm{LC})$, the L and C act like a wire: $\omega \mathrm{L}-1 /(\omega \mathrm{C})=0$. Thus, $z=\mathrm{R}$ at $\omega_{\mathrm{o}}$.

For $z$ above or below $\omega_{0}$, the magnitude of $[\omega \mathrm{L}-1 /(\omega \mathrm{C})]$ increases. Thus, our plot of $|z|$ will be bowl-shaped with a minimum value of R at $\omega_{0}$.
Fig. 2) $\quad z=(\mathrm{R}+\mathrm{j} \omega \mathrm{L}) \| 1 /(\mathrm{j} \omega \mathrm{C})$
Consider the qualitative behavior at key frequencies: (Note that the lower magnitude impedance dominates in a parallel configuration.)

At $\omega=0, R+j \omega L=R$ and $1 /(j \omega C)=\infty$.
Thus, $z=\mathrm{R}$.
At $\omega=R / L, R+j \omega L=R(1+j)$ and $1 /(j \omega C)=-j R[(L / R) /(R C)]$.
Thus, $z=\mathrm{R}[(1+\mathrm{j}) \|-\mathrm{j}(\mathrm{L} / \mathrm{R}) /(\mathrm{RC})]$, and $z$ will behave more like the smaller of the parallel terms. If $L / R=R C$, however, we will have $z=\mathrm{R}[(1+\mathrm{j}) \|-\mathrm{j}]=\mathrm{R}(1-\mathrm{j})$. For the component values given, $\mathrm{L} / \mathrm{R}=1 / 4 \mathrm{~ms}, \mathrm{RC}=40 \mathrm{~ns}$, and $(\mathrm{L} / \mathrm{R}) /(\mathrm{RC})=6.25 \mathrm{k}$. It follows that $z \approx \mathrm{R}(1+\mathrm{j})$ at $\omega=\mathrm{R} / \mathrm{L}$ for this circuit.

As $\omega \rightarrow \infty, R+j \omega L \rightarrow R+j \infty$ and $1 /(j \omega C) \rightarrow 0$.
Thus, $z \rightarrow 0$.

Now we examine the behavior versus frequency more carefully. Our calculations are driven by the thought that the resonance of the L and C may cause the L and C to become almost an open circuit. The R , however, will affect the resonance.

To simplify the algebra, we use normalized (and unitless) frequency $\omega_{\mathrm{n}}=\omega /(\mathrm{R} / \mathrm{L})$. We have $z=\mathrm{R}\left[\left(1+\mathrm{j} \omega_{\mathrm{n}}\right) \|-\mathrm{j}(\mathrm{L} / \mathrm{R}) /\left(\mathrm{RC} \omega_{\mathrm{n}}\right)\right]$.

Define $k \equiv(\mathrm{~L} / \mathrm{R}) /(\mathrm{RC})$. Then we have $z=\mathrm{R}\left[\left(1+\mathrm{j} \omega_{\mathrm{n}}\right) \|-\mathrm{j} k / \omega_{\mathrm{n}}\right]$ or $z=\mathrm{R}\left[\left(-\mathrm{j} k / \omega_{\mathrm{n}}+k\right) /\left(1+\mathrm{j}\left[\omega_{\mathrm{n}}-k / \omega_{\mathrm{n}}\right]\right)\right]$.

Define $\omega_{\mathrm{no}} \equiv \sqrt{ } k$. At $\omega_{\mathrm{n}}=\omega_{\mathrm{no}}$, we have $\omega=\omega_{\mathrm{o}} \equiv 1 / \sqrt{ }(\mathrm{LC}), \omega_{\mathrm{no}}=k / \omega_{\mathrm{no}}$, and $z=\mathrm{R}\left[-\mathrm{j} \omega_{\mathrm{no}}+k\right]=\mathrm{R}[-\mathrm{j} \sqrt{ } k+k]$.

If $k \ll 1$, then $z \approx \mathrm{R} k \ll \mathrm{R}$ and the L and C do not act like an open circuit at resonance. Instead, the circuit acts like the C is nearly shorted.

If $k \gg 1$, then $z \approx \mathrm{R} k \gg \mathrm{R}$ and the L and C almost act like an open circuit at resonance. This case applies to Fig. 2.

Now we have enough information to describe the shape of $|z|$ versus $\omega$ as $\omega$ goes from 0 to $\infty$ :
$|z|=\mathrm{R}=40 \Omega$ at $\omega=0$.
$|z|$ increases to a resonant peak of (approximate) height $k \mathrm{R}=6.25 \mathrm{k} \cdot 40 \Omega=250 \mathrm{k} \Omega$. The resonant frequency is $1 / \sqrt{ }(\mathrm{LC})=1 \mathrm{M} / \sqrt{ } 10 \mathrm{rad} / \mathrm{s}$.
$|z|$ then decreases toward 0 as $\omega \rightarrow \infty$.

Fig. 3) Based on calculations for Fig. 2, if we double R then the curve for $|z|$ starts at twice the height but the resonant peak height of $\mathrm{R} k$ is only half as
high (since $\mathrm{R} k$ behaves like $1 / \mathrm{R}$ ). The frequency of the resonant peak is unaffected.

If we double L , then the curve for $|z|$ still starts at height R but the resonant peak height of $\mathrm{R} k$ is about twice as high (since $k$ is proportional to L ). The frequency of the resonant peak is lowered by a factor of $\sqrt{ }$.

Note: These results only apply to the case $k \gg 1$. If R becomes too large, then our approximations break down (and the resonant peak may disappear entirely).

