EX: \quad The circuit shown below is a wave trap, used to prevent the signal from an amateur radio transmitter from entering the input of a TV receiver. Choose proper values of L and C if the transmitter frequency is 50 MHz , and R does not affect the resonant frequency appreciably. Explain how the circuit works. The bottom edge of Channel 2 is at 54 MHz .

What value of R would be required to make $\mathrm{IZ\mid}$ at 54 MHz of one of the resonant circuits equal to $1 / 10$ of its value at resonance and what value of impedance would that be at 54 MHz ?

Note: the frequencies here are in units of Hz rather than rad/s.

ANS: \quad There is no unique answer. For $\mathrm{C}=100 \mathrm{pF}$, then $\mathrm{L}=0.101 \mu \mathrm{H}, \mathrm{R} \approx 0.492 \Omega$, $|Z| \approx 205 \Omega$ at 54 MHz.

Sol'n: The idea is that L parallel C will act like an open circuit at resonance. This prevents the interfering signal from reaching the receiver. With the R included, (but relatively small), the resonant frequency remains approximately the same:

$$
\omega_{\mathrm{o}} \equiv \frac{1}{\sqrt{L C}}
$$

In units of Hz , we have

$$
f_{\mathrm{o}} \equiv \frac{\omega_{\mathrm{o}}}{2 \pi}=\frac{1}{2 \pi \sqrt{L C}}
$$

Any L and C satisfying the following equation will yield the correct resonant frequency:

$$
L C=\frac{1}{\left(2 \pi f_{\mathrm{o}}\right)^{2}}=\frac{1}{\left(2 \pi 50 \cdot 10^{6}\right)^{2}} \mathrm{~s}^{2} \approx 10.1 \cdot \mu \mathrm{ps}^{2}
$$

One solution is $\mathrm{C}=100 \mathrm{pF}$ and $\mathrm{L}=0.101 \mu \mathrm{H}$.
Now we find the value for R.
At resonance, we have equal but opposite reactances for the L and C .
Define the reactances at ω_{0} to be +jX and -jX . From the definition of ω_{o}, we have $\mathrm{X}=\sqrt{ }(\mathrm{L} / \mathrm{C})=31.8 \Omega$.
At ω_{0}, the impedance, z_{0}, of one side of the trap circuit, (i.e., one C in parallel with an L plus an R), is

$$
z_{\mathrm{o}}=\frac{(R+j X)(-j X)}{R+j X-j X}=\frac{X^{2}-j R X}{R}=X\left(\frac{X}{R}-j\right)
$$

For a frequency, $k \omega_{0}$, our L and C reactances become $\mathrm{j} k X$ and $-\mathrm{j} \mathrm{X} / k$, and we have

$$
z_{k}=\frac{(R+j k X)(-j X / k)}{R+j k X-j X / k}=\frac{X^{2}-j R X / k}{R+j X(k-1 / k)}=X\left(\frac{X-j R / k}{R+j X(k-1 / k)}\right)
$$

or

$$
z_{k}=X\left(\frac{\frac{X}{R}-j \frac{1}{k}}{1+j \frac{X}{R}(k-1 / k)}\right)
$$

We want $\left|z_{\mathrm{k}} / z_{0}\right|=1 / 10$ when $k=54 \mathrm{MHz} / 50 \mathrm{MHz}=1.08$.
If we define $B \equiv X / R$, we have

$$
\left|\frac{z_{k}}{z_{\mathrm{o}}}\right|=\frac{\left|\frac{B-j \frac{1}{k}}{1+j B\left(k-\frac{1}{k}\right)}\right|}{|B-j|}=\frac{1}{10} .
$$

At this point, it is prudent to attempt an approximation. Because $k \approx 1$, we may approximate $\mathrm{B}-\mathrm{j} / k$ as $\mathrm{B}-\mathrm{j}$ and cancel terms to obtain a simpler equation:
$\left|\frac{z_{k}}{z_{\mathrm{o}}}\right| \approx \frac{1}{\left|1+j B\left(k-\frac{1}{k}\right)\right|}=\frac{1}{10}$.
Inverting both sides and applying the definition of magnitude, we have

$$
\left|1+j B\left(k-\frac{1}{k}\right)\right|=\sqrt{1^{2}+\left[B\left(k-\frac{1}{k}\right)\right]^{2}}=10 .
$$

Solving for B, we have
$\left[B\left(k-\frac{1}{k}\right)\right]^{2}=99$ or $B=\frac{\sqrt{99}}{k-\frac{1}{k}}=\frac{\sqrt{99}}{1.08-\frac{1}{1.08}} \approx 64.58$.
Using $\mathrm{R}=\mathrm{X} / \mathrm{B}=31.8 \Omega / 64.58$, we have $\mathrm{R}=0.492 \Omega$.
At 54 MHz , we have
$\left|z_{k}\right|=X \frac{\left|B-j \frac{1}{k}\right|}{|1+j B(k-1 / k)|}=X \frac{\left|B-j \frac{1}{k}\right|}{10} \approx X \frac{|B|}{10}=31.8 \Omega \frac{64.58}{10}$
We obtain $\left|z_{\mathrm{k}}\right| \approx 205 \Omega$ at 54 MHz .

