DEF: Fourier series for periodic $g(x) \equiv \sum_{n=0}^{\infty}\left[a_{n} \sqrt{2 f_{0}} \cos \left(2 \pi n f_{0} t\right)+b_{n} \sqrt{2 f_{0}} \sin \left(2 \pi n f_{0} t\right)\right]$ where period of $g(x)$ is periodic with period $T=\frac{1}{f_{0}}$.

Note: \quad Since $\sin \left(2 \pi n f_{0} t\right)=0$ for $n=0$ and $\cos \left(2 \pi n f_{0} t\right)=1$ for $n=0$, the Fourier series for periodic $g(x)$ may also be written as

$$
g(x) \equiv a_{0}+\sum_{n=1}^{\infty}\left[a_{n} \sqrt{2 f_{0}} \cos \left(2 \pi n f_{0} t\right)+b_{n} \sqrt{2 f_{0}} \sin \left(2 \pi n f_{0} t\right)\right]
$$

DEF: Fundamental frequency of periodic $g(x) \equiv f_{0}=\frac{1}{T}$.
Ex:

This sawtooth waveform has period $x_{1}-x_{0}=\frac{3}{2}--\frac{1}{2}=2$. Therefore, the fundamental frequency is $f_{0}=\frac{1}{2}$. Thus,

$$
g(x) \equiv a_{0}+\sum_{n=1}^{\infty}\left[a_{n} \cos (\pi n t)+b_{n} \sin (\pi n t)\right]
$$

Ex:

The above quadratic function is not periodic. It has no Fourier series representation, (unless we extract a section from it and make side-by-side copies so it becomes periodic). We might try to use a Fourier transform representation of $g(x)$, but this approach would also fail, as the energy in the function is infinite:

$$
\int_{-\infty}^{\infty} g^{2}(x) d x=\infty
$$

