FOURIER SERIES N-DIMENSIONAL SERIES Definition

DEF: N-dimensional Fourier series for f(x) on domain $\left[-\frac{1}{2}, \frac{1}{2}\right]^N$ (or other unit hypercube such as $[0,1]^N$) = $f(\vec{x}) = \sum_{\vec{n}} \left[a_{\vec{n}} \sqrt{2} \cos(2\pi \vec{n} \circ \vec{x}) + b_{\vec{n}} \sqrt{2} \sin(2\pi \vec{n} \circ \vec{x}) \right]$

where \vec{n} ranges over all vectors of form $(n_1, ..., n_N)$ with integer entries and first nonzero entry restricted to positive values.

NOTE: The restriction that the first nonzero entry in \vec{n} be positive avoids having essentially the same cosine or sine term appear twice in the series owing to the similarity of sinusoids with positive and negative arguments:

$$\cos(x) = \cos(-x)$$
$$\sin(x) = \sin(-x)$$

In other words, the restriction on \vec{n} eliminates $-\vec{n}$ from the series.

- **NOTE:** $\sqrt{2}\cos(2\pi \vec{n} \circ \vec{x}) = \sqrt{2}\cos(2\pi [n_1x_1 + n_2x_2])$ in two dimensions.
- **NOTE:** $\sqrt{2}\cos(2\pi n_1 x_1 + n_2 x_2)$ [or $\sqrt{2}\sin(2\pi n_1 x_1 + n_2 x_2)$] resembles water waves with crests lying on parallel lines.
- **TOOL:** \vec{n} is \perp (is perpendicular to) the wave crests of $\sqrt{2}\cos(2\pi \vec{n} \circ \vec{x})$
- **TOOL:** The spacing, d, of wave crests of $\sqrt{2}\cos(2\pi \vec{n} \circ \vec{x})$ is found by solving the following equation:

$$\vec{n} \circ d \frac{\vec{n}}{|\vec{n}|} = 1$$
 (so argument of $\cos(1) = 2\pi$; crests occur where $\cos(1) = 1$)

or

$$d = \frac{1}{\left| \vec{n} \right|}$$