Ex: Verify that the power of a square wave calculated directly from

$$
p=\frac{1}{T} \int_{0}^{T} v^{2}(t) d t
$$

equals the power calculated from Fourier coefficients.

ANS: \quad Power in both cases is $p=A^{2}$ where A is the amplitude of the square wave.

SOL'N: Consider a square wave, $v(t)$, of period T that is an odd function (positive with value A from $t=0$ to $t=T / 2$ and value $-A$ from $t=T / 2$ to $t=T$).

The square wave, being an odd function, has only sine terms. The square wave, having shift-flip symmetry, has only odd numbered terms.

Direct calculation gives the coefficients for the Fourier series. Because of shiftflip symmetry, we need only integrate from 0 to $T / 2$ and double the value.

$$
b_{k}=2 \cdot \frac{2}{T} \int_{0}^{T / 2} v(t) \sin (2 \pi k t / T) d t
$$

$v(t)$ is constant from 0 to $T / 2$.

$$
b_{k}=2 \cdot \frac{2}{T} \int_{0}^{T / 2} A \sin (2 \pi k t / T) d t
$$

We may assume any value we desire for T. Here, we will assume $T=2 \pi k$. (Note that we may even use a value for T that changes with k.)

$$
b_{k}=2 \cdot \frac{2}{2 \pi k} A \int_{0}^{2 \pi k / 2} \sin (t) d t=\left.\frac{2 A}{\pi k}[-\cos (t)]\right|_{0} ^{\pi k}
$$

For k odd, $-\cos (\pi k)=1$, and we obtain our final answer:

$$
b_{k}=\left\{\begin{array}{cc}
\frac{4 A}{\pi k} & k \text { odd }>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

We calculate the average power in terms of Fourier series coefficients by squaring coefficients and multiplying by $1 / 2$ (since this is the average value of a sinusoid squared). Note that we square and multiply by 1 for the DC offset, (i.e., constant offset), a_{v}, since this is the average value of 1^{2}.

$$
p=a_{v}^{2}+\frac{1}{2} \sum_{k=1}^{\infty}\left(a_{k}^{2}+b_{k}^{2}\right)
$$

For our Fourier series we have only odd coefficients for sines:

$$
p=\frac{1}{2} \sum_{k=1}^{\infty} b_{k}^{2}=\frac{1}{2} \sum_{k>0 \text { odd }}\left(\frac{4 A}{\pi k}\right)^{2}=\frac{8 A^{2}}{\pi^{2}} \sum_{k>0 \text { odd }} \frac{1}{k^{2}}
$$

From Tables of Integrals and Other Mathematical Data by Herbert B. Dwight, we have
$\sum_{k>0 \text { odd }} \frac{1}{k^{2}}=\frac{\pi^{2}}{8}$.
Thus, we have $p=A^{2}$.

Calculating the power directly, we compute the energy in one period and divide by the period:

$$
p=\frac{1}{T} \int_{0}^{T} v^{2}(t) d t
$$

The square wave has values $+A$ and $-A$ and a constant, squared value of A^{2}.

$$
p=\frac{1}{T} \int_{0}^{T} A^{2} \quad d t=\frac{1}{T} A^{2} T=A^{2}
$$

Thus, the power is the same as calculated from the Fourier series.

