Ex: Fill in the following table for the functions shown below.

	$\mathrm{g}(\mathrm{t})$		$\mathrm{h}(\mathrm{t})$	
	True	False	True	False
The function is odd				
The function is even				
The function has shift-flip symmetry				
The function has quarter-wave symmetry				
$\mathrm{a}_{\mathrm{v}}=0$ (DC offset)				
All the a_{k} are zero				
All b_{k} are zero for even-numbered subscripts				

ANS:

	$g(t)$		$\mathrm{h}(\mathrm{t})$	
	True	False	True	False
The function is odd		$\sqrt{ } 1$	$\sqrt{ } 8$	
The function is even	$\sqrt{ } 2$			$\sqrt{ } 9$
The function has shift-flip symmetry		$\sqrt{ } 3$		$\sqrt{ } 10$
The function has quarter-wave symmetry		$\sqrt{ } 4$		$\sqrt{ } 11$
$\mathrm{a}_{\mathrm{v}}=0$ (DC offset)		$\sqrt{ } 5$	$\sqrt{ } 12$	
All the a_{k} are zero		$\sqrt{ } 6$	$\sqrt{ } 13$	
All b_{k} are zero for even-numbered subscripts	$\sqrt{ } 7$			$\sqrt{ } 14$

SOL'N: Answers are explained per superscript number.
$1 \mathrm{~g}(\mathrm{t})$ is not odd because it is not equal to the original $\mathrm{g}(\mathrm{t})$ after being flipped around the vertical and horizontal axes.
${ }^{2} \mathrm{~g}(\mathrm{t})$ is even because it is symmetrical (and periodic, of course) around the vertical axis. Cosines are also even functions and so constitute the terms of Fourier series for even functions.
${ }^{3}$ Shift-flip symmetry means the function is equal to a copy of itself that is shifted one-half cycle to the right and flipped upside down. A cycle for $g(t)$ is the width of one hump. If we shift $g(t)$ to the right by half the width of a hump and then flip it upside down, then we obtain a function that is always negative. Thus, it is clearly not equal to the original $g(t)$.
${ }^{4}$ Quarter-wave symmetry means the function has shift-flip symmetry and is symmetric to the left and right around the point at $\mathrm{T} / 4$ as well as to the left and right around the point at $3 T / 4$. (Imagine placing a vertical axis at $\mathrm{T} / 4$ or $3 \mathrm{~T} / 4$ and looking for mirror-image symmetry around that axis.) The period of $g(t)$
is one lobe, and we do not have mirror-image symmetry around $\mathrm{T} / 4$ and/or 3T/4:

${ }^{5}$ We have a zero DC offset only if $g(t)$ has equal area above and below the horizontal axis. We may think of $\mathrm{g}(\mathrm{t})$ as being made of butter that we smooth out until it is perfectly flat. If the flat height is nonzero, then the DC offset is not zero.
${ }^{6}$ The a_{k} coefficients are for cosine terms. Since $\mathrm{g}(\mathrm{t})$ is even (and nonzero) and cosine terms are even functions, we must have some cosine terms. (The sum of even functions is an even function.) Thus, the a_{k} are not all zero.
${ }^{7}$ The b_{k} coefficients for even-numbered subscripts are for sine terms with an even number of cycles per period of $g(t)$. Since $g(t)$ is even, we have only cosine terms, and all a_{k} are zero whether k is even or odd.
${ }^{8} h(t)$ is odd because is equal to the original $g(t)$ after being flipped around the vertical and horizontal axes.
${ }^{9} \mathrm{~h}(\mathrm{t})$ is not symmetrical around the vertical axis. Thus, it is not even.
${ }^{10}$ Shift-flip symmetry means the function is equal to a copy of itself that is shifted one-half cycle to the right and flipped upside down. The following figures show $h(t)$ shifted right by $1 / 2$ cycle and then flipped upside down:

The last function is not the same as the original $\mathrm{h}(\mathrm{t})$. Thus $\mathrm{h}(\mathrm{t})$ does not have shift flip symmetry.
${ }^{11}$ Clearly, $\mathrm{h}(\mathrm{t})$ is not symmetrical about the quarter-wave points:

${ }^{12}$ We have a zero DC offset if $h(t)$ has equal area above and below the horizontal axis. We may think of $h(t)$ as being made of butter that we smooth out until it is perfectly flat. Clearly, the area under $h(t)$ above the horizontal will exactly fill the area carved out by $h(t)$ below the horizontal axis. Thus, the height after flattening is zero, and the DC offset is zero.
${ }^{13}$ The a_{k} coefficients are for cosine terms. Since $h(t)$ is an odd function and sines are odd functions, we will have only sine terms. Thus, the a_{k} are all zero.
${ }^{14}$ The b_{k} coefficients for even-numbered subscripts are for sine terms with an even number of cycles per period of $h(t)$. The figures below show $h(t)$, $\sin (2 \cdot 2 \pi t / T)$ where T is the period, and $h(t) \sin (2 \cdot 2 \pi t / T)$. The coefficient, b_{2}, is equal to $2 / \mathrm{T}$ times the area under (i.e., integral of) one period of $h(t) \sin (2 \cdot 2 \pi t / T)$. This area appears to be zero, but the strange shapes prevent a definite conclusion from visual inspection alone.

Thus, we tackle the problem mathematically.

$$
b_{k}=\frac{2}{T} \int_{0}^{T} h(t) \sin \left(k 2 \pi \frac{t}{T}\right) d t
$$

Exploiting symmetry around T/2 for k even, we have

$$
b_{k}=2 \cdot\left[\frac{2}{T} \int_{0}^{T / 4} \frac{4 t}{T} \sin \left(k 2 \pi \frac{t}{T}\right) d t+\frac{2}{T} \int_{T / 4}^{T / 2} \frac{1}{2} \sin \left(k 2 \pi \frac{t}{T}\right) d t\right]
$$

From integral tables or a calculator, we have

$$
\int x \sin (a x) d x=\frac{1}{a^{2}} \sin (a x)-\frac{x}{a} \cos (a x) .
$$

We may also assume that $\mathrm{T}=1$ without affecting our answer.

$$
b_{k}=4\left[4 \int_{0}^{1 / 4} t \sin (k 2 \pi t) d t+\frac{1}{2} \int_{1 / 4}^{1 / 2} \sin (k 2 \pi t) d t\right]
$$

$$
b_{k}=\left.16\left[\frac{1}{(k 2 \pi)^{2}} \sin (k 2 \pi t)-\frac{t}{k 2 \pi} \cos (k 2 \pi t)\right]\right|_{0} ^{1 / 4}-\left.2 \frac{1}{k 2 \pi} \cos (k 2 \pi t)\right|_{1 / 4} ^{1 / 2}
$$

For k even and $\mathrm{t}=0, k 2 \pi \mathrm{t}=0$ and $\sin (k 2 \pi \mathrm{t})=0$.

For k even and $\mathrm{t}=1 / 4, k 2 \pi \mathrm{t}=$ integer $\cdot \pi$ and $\sin (k 2 \pi \mathrm{t})=0$.
For $\mathrm{t}=0, \mathrm{t} \cdot \cos (\mathrm{k} 2 \pi \mathrm{t})=0$.
Thus, we have

$$
\begin{aligned}
& b_{k}=\left.16\left[-\frac{t}{k 2 \pi} \cos (k 2 \pi t)\right]\right|^{1 / 4}-\left.2 \frac{1}{k 2 \pi} \cos (k 2 \pi t)\right|_{1 / 4} ^{1 / 2} \\
& b_{k}=-\frac{4}{k 2 \pi} \cos (k 2 \pi / 4)-2 \frac{1}{k 2 \pi} \cos (k 2 \pi / 2)+2 \frac{1}{k 2 \pi} \cos (k 2 \pi / 4) \\
& b_{k}=-\frac{2}{k 2 \pi} \cos (k 2 \pi / 4)-2 \frac{1}{k 2 \pi} \cos (k 2 \pi / 2)
\end{aligned}
$$

For $k=2$, we have

$$
b_{2}=-\frac{1}{2 \pi} \cos (\pi)-\frac{1}{2 \pi} \cos (2 \pi)=-\frac{1}{2 \pi}(-1+1)=0
$$

So it seems that $\mathrm{b}_{\mathrm{k}}=0$ might be true for all k even. Considering $k=4$, however, we have
$b_{4}=-\frac{1}{4 \pi} \cos (2 \pi)-\frac{1}{4 \pi} \cos (4 \pi)=-\frac{1}{4 \pi}(1+1)=-\frac{1}{2 \pi}$.
It follows that b_{4} is not zero, and the b_{k} for k even are not all zero. Note that this problem exhibited an unusual symmetry that made the first even numbered b coefficient zero. Sometimes, the math is necessary. The standard types of symmetry and the pictures that go with them, however, tend to give results that are more obvious.

Note: In this problem, we could actually determine that b_{2} is zero by observing that the initial sloped part of $h(t)$ is symmetric around its center point located at $\mathrm{T} / 8$. The first hump in $\sin (2 \cdot 2 \pi \mathrm{t} / \mathrm{T})$ is also symmetric around $\mathrm{T} / 8$. The height of $\mathrm{h}(\mathrm{t})$ at $\mathrm{T} / 8$ is equal to the height of the flat segment that follows. As we move to the left and right of $\mathrm{T} / 8$, we will multiply $\sin (2 \cdot 2 \pi \mathrm{t} / \mathrm{T})$ by values that are equally above and below the height of $h(t)$ at $T / 8$. Thus, when we compute the integral of (i.e., area under) $h(t) \cdot \sin (2 \cdot 2 \pi t / T)$ from 0 to $\mathrm{T} / 4$, we will have exactly the same value as we have for the integral of $h(T / 8) \cdot \sin (2 \cdot 2 \pi t / T)$ from 0 to $T / 4$.

In other words, we get the same answer as we would get if we used a constant value for $h(t)$, and that constant value is exactly the height of the flat segment that follows the initial sloped part of $h(t)$. By symmetry, we conclude that we may replace the entire $h(t)$ by the constant value $h(T / 8)$. Now b_{2} is seen to be proportional to the integral of a constant times $\sin (2 \cdot 2 \pi t / T)$. The integral of any sinusoid of an integer number of cycles is zero, however, so we conclude that b_{2} is zero.

