Apr 1990 Gradient Descent - Mathematical View
Neil & Cotten

$$\nabla m = -\lambda \frac{9m}{9E(m)}$$

or
$$\Delta \vec{\omega} = - \eta \ \nabla E(\vec{\omega})$$

Observe that $\frac{\partial E}{\partial w} \approx \frac{\Delta E}{\Delta w} = \text{change in } E$ for a change in w

If $\Delta E > 0$ then positive change in W implies positive change in ΔE .

To lower E, we should therefore use Δw negative, which is what $-\eta \frac{\partial E(\omega)}{\partial w}$ does. $(\eta > 0)$

If ΔE <0 then positive change in ω implies negative change in ΔE .

To lower E, we should therefore use Δw positive, which is what $-\eta \frac{\partial E}{\partial w}$ does.

Conclusion: Gradient descent always moves us toward lower E, (if we make small steps, $\eta \ll 1$).

is large If $\frac{\partial E(\omega)}{\partial w}$ I we stand to g lower E

more by making a larger step in w.