Ex: \quad Find the following Laplace transform:

$$
\mathcal{L}\left\{\int_{0}^{t} e^{-6 \tau} u(6 \tau) d \tau\right\}
$$

SOL'N: Apply the scaling identity with $a=6$ to $f(t)=e^{-t} u(t)$:

$$
\mathcal{L}\{f(a t)\}=\left.\frac{1}{a} \mathcal{L}\{f(t)\}\right|_{\text {replace } s \text { with } \frac{s}{a}}
$$

The result:

$$
\begin{aligned}
& \frac{1}{6} \mathcal{L}\left\{e^{-6 t} u(6 t)\right\}=\left.\frac{1}{6} \mathcal{L}\left\{e^{-t} u(t)\right\}\right|_{\text {replace } s \text { with } \frac{s}{6}} \\
& \frac{1}{6} \mathcal{L}\left\{e^{-6 t} u(6 t)\right\}=\left.\frac{1}{6} \frac{1}{(s+1)}\right|_{\text {replace } s \text { with } \frac{s}{6}}
\end{aligned}
$$

The result we obtain when we simplify is the same as we would have if our original expression were written with $u(t)$ in place of $u(6 t)$. This makes sense since scaling of t leaves $u()$ unchanged.

$$
\mathcal{L}\left\{e^{-6 t} u(6 t)\right\}=\frac{1}{6} \frac{1}{\left(\frac{s}{6}+1\right)}=\frac{1}{s+6}
$$

To account for the integral, we multiply the previous answer by $1 / s$:

$$
\mathcal{L}\left\{\int_{0}^{t} e^{-6 \tau} u(6 \tau) d \tau\right\}=\frac{1}{s} \cdot \frac{1}{s+6}=\frac{1}{s(s+6)}
$$

This problem is simple enough that we may easily check our answer by computing the integral before taking the Laplace transform:

$$
\mathcal{L}\left\{\int_{0}^{t} e^{-6 \tau} u(6 \tau) d \tau\right\}=\mathcal{L}\left\{\left.\frac{e^{-6 t}}{-6}\right|_{0} ^{t}\right\}=\mathcal{L}\left\{\frac{1}{-6}\left(e^{-6 t}-1\right)\right\}
$$

or

$$
\mathcal{L}\left\{\int_{0}^{t} e^{-6 \tau} u(6 \tau) d \tau\right\}=\frac{1}{6}\left(\frac{1}{s}-\frac{1}{s+6}\right)=\frac{1}{s(s+6)} \sqrt{ }
$$

