Ex: Find

$$
\lim _{t \rightarrow \infty} f(t) \text { if } F(s)=\frac{3}{s\left[(s+4)^{2}+36\right]}
$$

SOL'N: Apply the final value theorem:

$$
\lim _{t \rightarrow \infty} f(t)=\lim _{s \rightarrow 0} s \mathcal{L}\{f(t)\}=\lim _{s \rightarrow 0} s F(s)
$$

We first factor out the highest power of s from the numerator and denominator and cancel out as many powers of s as possible:

$$
s F(s)=\frac{s}{s} \cdot \frac{3}{\left[(s+4)^{2}+36\right]}=\frac{3}{\left[(s+4)^{2}+36\right]}
$$

If there are pure powers of s remaining in the numerator or denominator, we may immediately conclude that the answer is zero or infinity, respectively.

Otherwise, as in the present case, we proceed to substitute $s=0$ in the numerator and denominator to obtain our final result:

$$
\lim _{t \rightarrow \infty} f(t)=\lim _{s \rightarrow 0} s F(s)=\frac{3}{4^{2}+36}=\frac{3}{52}
$$

