Ex: \quad Find $\lim _{t \rightarrow 0^{+}} f(t)$ if $F(s)=\frac{s(9 s-6)}{3\left(s^{2}+4\right)(s+2)}$.

Sol'n: We apply the initial value theorem:

$$
\lim _{t \rightarrow 0^{+}} f(t)=\lim _{s \rightarrow \infty} s F(s)
$$

Applying the theorem gives the following expression:

$$
\lim _{t \rightarrow 0^{+}} f(t)=\lim _{s \rightarrow \infty} \frac{s^{2}(9 s-6)}{3\left(s^{2}+4\right)(s+2)}
$$

When we have s approaching infinity, we may ignore finite constants added to powers of s :

$$
\lim _{t \rightarrow 0^{+}} f(t)=\lim _{s \rightarrow \infty} \frac{s^{2}(9 s)}{3 s^{2} s}=\lim _{s \rightarrow \infty} \frac{9 s^{3}}{3 s^{3}}
$$

We cancel the common factor of s^{3} in the numerator and denominator:

$$
\lim _{t \rightarrow 0^{+}} f(t)=\lim _{s \rightarrow \infty} \frac{9}{3}=\frac{9}{3}=3
$$

Note: We may ignore any additive terms that have lower powers of s than the highest power of s in that term. We never ignore the coefficient of the highest power of s, however.

