Ex: Find the inverse Laplace transform for the following expression:

$$
F(s)=\frac{9 s+15}{s^{2}+5 s}
$$

SOL'N: First, we factor the denominator:

$$
F(s)=\frac{9 s+15}{s(s+5)}
$$

Second, we write $F(s)$ in terms of partial fractions:

$$
F(s)=\frac{K_{1}}{s}+\frac{K_{2}}{s+5}
$$

Third, we find the coefficients for the partial fractions by multiplying the root (or pole) term and setting s equal to the root:

$$
K_{1}=\left.s F(s)\right|_{s=0}=\left.s \frac{9 s+15}{s(s+5)}\right|_{s=0}=\left.\frac{9 s+15}{(s+5)}\right|_{s=0}=\frac{15}{5}=3
$$

The above calculation shows that we cancel a root (or pole) term in the denominator when we multiply the numerator by that root term. We save a step in the following calculation by canceling the root term:

$$
K_{2}=\left.(s+5) F(s)\right|_{s=-5}=\left.\frac{9 s+15}{s}\right|_{s=-5}=\frac{-30}{-5}=6
$$

Fourth, we take the inverse Laplace transform of each term using the following basic identity:

$$
\mathcal{L}^{-1}\left\{\frac{K}{s+a}\right\}=K e^{-a t}
$$

Note that we treat s as $s+0$.

