Ex: \quad Find the inverse Laplace transform for the following expression:

$$
F(s)=\frac{7 s^{2}+14 s+9}{(s+1)^{3}}
$$

SOL'N: We have repeated roots which necessitates the use of a different method than we would use for single roots. We write a partial fraction term for each power of the root term:

$$
F(s)=\frac{K_{1}}{(s+1)^{3}}+\frac{K_{2}}{(s+1)^{2}}+\frac{K_{3}}{s+1}
$$

To find K_{1}, we multiply by the highest power of the root term and evaluate the expression when the root term equals zero:

$$
K_{1}=\left.(s+1)^{3} F(s)\right|_{s+1=0}
$$

NOTE: To see why this works, consider what is happening when $\mathrm{F}(\mathrm{s})$ is written in terms of partial fractions:

$$
\left.(s+1)^{3} F(s)\right|_{s+1=0}=\frac{K_{1}(s+1)^{3}}{(s+1)^{3}}+\frac{K_{2}(s+1)^{3}}{(s+1)^{2}}+\left.\frac{K_{3}(s+1)^{3}}{s+1}\right|_{s+1=0}
$$

After canceling terms, we find that K_{2} and K_{3} are multiplied by zero:

$$
\left.(s+1)^{3} F(s)\right|_{s+1=0}=K_{1}+K_{2}(s+1)+\left.K_{3}(s+1)^{2}\right|_{s+1=0}
$$

For the problem at hand, we calculate K_{1} as follows:

$$
K_{1}=\left.(s+1)^{3} F(s)\right|_{s+1=0}=7 s^{2}+14 s+\left.9\right|_{s+1=0}
$$

or

$$
K_{1}=7 s^{2}+14 s+\left.9\right|_{s=-1}=7-14+9=2
$$

If we try to find K_{2} by multiplying $F(s)$ by $(s+1)^{2}$ and evaluating at $s+1=0$, we find that we have a divide by zero in the first term containing K_{1}. Thus, we must find a new approach that will yield the value of $K_{2}\left(\right.$ and $\left.K_{3}\right)$.

One method that works is to take the derivative (with respect to s) of $(s+1)^{3} F(s)$ and evaluate that function where the root equals zero:

$$
K_{2}=\left.\left\{\frac{d}{d s}\left[(s+1)^{3} F(s)\right]\right\}\right|_{s+1=0}
$$

NOTE: We take the derivative before we evaluate at the root value. Otherwise, we are differentiating a constant and always get zero as our answer.
NOTE: To see why this works, again consider what is happening when $\mathrm{F}(\mathrm{s})$ is written in terms of partial fractions:

$$
\frac{d}{d s}\left[(s+1)^{3} F(s)\right]=\frac{d}{d s}\left[K_{1}+K_{2}(s+1)+K_{3}(s+1)^{2}\right]
$$

Because the derivative of K_{1} is zero, it is eliminated. K_{2} appears without a multiplier, and K_{3} is multiplied by the root term, which will be zero when we evaluate at the value of the root.

$$
\frac{d}{d s}\left[(s+1)^{3} F(s)\right]=K_{2}+2 K_{3}(s+1)
$$

Note that K_{3} is multiplied by 2 rather than 1 . This will affect the calculation of K_{3}, below.

For the problem at hand, we calculate K_{2} as follows:

$$
K_{2}=\left.\frac{d}{d s}(s+1)^{3} F(s)\right|_{s+1=0}=\frac{d}{d s} 7 s^{2}+14 s+\left.9\right|_{s+1=0}
$$

or

$$
K_{2}=14 s+\left.14\right|_{s+1=0}=-14+14=0
$$

To find K_{3}, we differentiate again and evaluate where the root is zero. We must divide by 2 , however, because the first time we differentiate we get $2 K_{3}(s+1)$.

$$
K_{3}=\left.\frac{1}{2} \frac{d^{2}}{d s^{2}}(s+1)^{3} F(s)\right|_{s+1=0}
$$

NOTE: In general, if we start with a root of order n, we will have to divide by $(m-1)$! when finding K_{m}.

$$
K_{m}=\left.\frac{1}{(m-1)!} \frac{d^{(m-1)}}{d s^{(m-1)}}(s+a)^{n} F(s)\right|_{s+a=0}
$$

For the problem at hand, we calculate K_{3} as follows:

$$
K_{3}=\left.\frac{1}{2} \frac{d^{2}}{d s^{2}}(s+1)^{3} F(s)\right|_{s+1=0}=\frac{1}{2} \frac{d}{d s} 14 s+\left.14\right|_{s+1=0}
$$

or

$$
K_{3}=\left.\frac{1}{2} 14\right|_{s+1=0}=7
$$

Again, we note that we must take all derivatives before evaluating the expression.

An alternative to the above approach is to find K_{1} in the same manner but find K_{2} and K_{3} by evaluating $(s+1)^{3} F(s)$ at convenient values of s. The convenient values chosen are up to the user, but choosing values of s that yield root terms equal to plus or minus one are convenient here:

$$
\begin{aligned}
& \left.(s+1)^{3} F(s)\right|_{s+1=1}=K_{1}+K_{2}(s+1)+\left.K_{3}(s+1)^{2}\right|_{s+1=1} \\
& \left.(s+1)^{3} F(s)\right|_{s+1=1}=K_{1}+K_{2}+K_{3}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left.(s+1)^{3} F(s)\right|_{s+1=-1}=K_{1}+K_{2}(s+1)+\left.K_{3}(s+1)^{2}\right|_{s+1=-1} \\
& \left.(s+1)^{3} F(s)\right|_{s+1=-1}=K_{1}-K_{2}+K_{3}
\end{aligned}
$$

For the problem at hand, we calculate values as follows:

$$
\left.(s+1)^{3} F(s)\right|_{s+1=1}=7 s^{2}+14 s+\left.9\right|_{s=0}=9
$$

or

$$
K_{1}+K_{2}+K_{3}=9
$$

and

$$
\left.(s+1)^{3} F(s)\right|_{s+1=-1}=7 s^{2}+14 s+\left.9\right|_{s=-2}=9
$$

or

$$
K_{1}-K_{2}+K_{3}=9
$$

From the two equations, we see that $K_{2}=0$, and using $K_{1}=2$ we see that $K_{3}=7$.

Now we are ready to find the inverse Laplace transform. The following identity is helpful:

$$
L^{-1}\left\{\frac{1}{(s+a)^{n}}\right\}=\frac{t^{n-1}}{(n-1)!} e^{-a t}
$$

For the problem at hand, we have the following partial fraction expression:

$$
F(s)=\frac{2}{(s+1)^{3}}+\frac{0}{(s+1)^{2}}+\frac{7}{s+1}
$$

Applying the identity yields our final time-domain answer:

$$
f(t)=\frac{t^{2}}{2} e^{-t}+7 e^{-t}
$$

