Ex: Find the inverse Laplace transform for the following expression:

$$
F(s)=-\frac{s^{2}+2 s+3}{(s+1)\left(s^{2}+4 s+5\right)}
$$

SOL'N: We may solve this problem using standard partial fraction techniques where we write $F(s)$ in terms of root (or pole) terms:

$$
F(s)=\frac{K_{1}}{s+1}+\frac{K_{2}}{s+2+j}+\frac{K_{2}^{*}}{s+2-j}
$$

An alternative approach that requires less work, however, involves choosing convenient values of s for which we evaluate $F(s)$ in its original form and in the following form (in which we have written the complex root terms as a sum of terms that are a decaying cosine and sine in the time domain):

$$
F(s)=\frac{K_{1}}{s+1}+\frac{K_{2}(s+a)+K_{3}(\omega)}{(s+a)^{2}+\omega^{2}}
$$

For the values of our root terms, $a=2$ and $\omega=-1$:

$$
F(s)=\frac{K_{1}}{s+1}+\frac{K_{2}(s+2)+K_{3}(1)}{(s+2)^{2}+1^{2}}
$$

Note that one may also use the preceding standard partial fraction expansion of $F(s)$ with the method that follows. The key idea is to find coefficients in whatever expansion we choose by equating $F(s)$ at several values of s.

Choosing convenient values of s is a matter of personal preference, but we must avoid choosing root (or pole) values. Here, we consider using $s=0, s=1$, and $s=-a=-2$.

$$
F(0)=-\frac{0^{2}+2 \cdot 0+3}{(0+1)\left(0^{2}+4 \cdot 0+5\right)}=\frac{K_{1}}{0+1}+\frac{K_{2}(0+2)+K_{3}(1)}{(0+2)^{2}+1^{2}}
$$

or

$$
\begin{aligned}
& F(0)=-\frac{3}{(1)(5)}=\frac{K_{1}}{1}+\frac{K_{2} \cdot 2+K_{3} \cdot 1}{5} \\
& F(1)=-\frac{1^{2}+2 \cdot 1+3}{(1+1)\left(1^{2}+4 \cdot 1+5\right)}=\frac{K_{1}}{1+1}+\frac{K_{2}(1+2)+K_{3}(1)}{(1+2)^{2}+1^{2}}
\end{aligned}
$$

or

$$
\begin{aligned}
& F(1)=-\frac{6}{(2)(10)}=\frac{K_{1}}{2}+\frac{K_{2} \cdot 3+K_{3} \cdot 1}{10} \\
& F(-2)=-\frac{(-2)^{2}+2 \cdot(-2)+3}{(-2+1)\left((-2)^{2}+4(-2)+5\right)}
\end{aligned}
$$

and

$$
F(-2)=\frac{K_{1}}{-2+1}+\frac{K_{2}(-2+2)+K_{3}(1)}{(-2+2)^{2}+1^{2}}
$$

or

$$
F(-2)=-\frac{3}{-1}=\frac{K_{1}}{-1}+\frac{K_{3}(1)}{1}
$$

We now have three equations in three unknowns. Putting each equation over its common denominator and then multiplying both sides by that denominator allows us to write these equations in a simple form:

$$
\begin{aligned}
& -3=5 K_{1}+2 K_{2}+K_{3} \\
& -3=5 K_{1}+3 K_{2}+K_{3} \\
& 3=-K_{1}+K_{3}
\end{aligned}
$$

From the first and second equations we see that $K_{2}=0$. Solving the second and third equations then yields the values of the other two coefficients:

$$
K_{1}=-1 \quad K_{2}=0 \quad K_{3}=2
$$

Thus, we have found the coefficients for the original form of $F(s)$:

$$
F(s)=\frac{K_{1}}{s+1}+\frac{K_{2}(s+2)}{(s+2)^{2}+1^{2}}+\frac{K_{3}(1)}{(s+2)^{2}+1^{2}}
$$

In the time domain we have three corresponding terms:

$$
\begin{aligned}
& f(t)=K_{1} e^{-t}+K_{2} e^{-2 t} \cos (t)+K_{3} e^{-2 t} \sin (t) \\
& f(t)=-e^{-t}+2 e^{-2 t} \sin (t)
\end{aligned}
$$

