Ex: Derive the following Laplace transform pair:

$$
\mathcal{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}
$$

SOL'N: Use induction and the following identity:

$$
\mathcal{L}\{t f(t)\}=-\frac{d}{d s} \mathcal{L}\{f(t)\}
$$

From a basic table of Laplace transform pairs, we verify that the transform pair is valid for $n=0$ and $n=1$:

$$
\begin{aligned}
& \mathcal{L}\left\{t^{0}\right\}=\mathcal{L}\{1\}=\mathcal{L}\{u(t)\}=\frac{1}{s}=\frac{0!}{s^{0+1}} \\
& \mathcal{L}\left\{t^{1}\right\}=\frac{1}{s^{2}}=\frac{1!}{s^{1+1}}
\end{aligned}
$$

Now assume the transform pair is true for n (and then show that it holds for $n+1$).

$$
\text { Assume } \mathcal{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}
$$

Then our identity says

$$
\mathcal{L}\left\{t \cdot t^{n}\right\}=-\frac{d}{d s} \frac{n!}{s^{n+1}}
$$

Calculating the derivative yields the following:

$$
\mathcal{L}\left\{t \cdot t^{n}\right\}=-n!\frac{-(n+1)}{s^{n+2}}
$$

This simplifies to the transform pair formula for $n+1$:
$\mathcal{L}\left\{t^{n+1}\right\}=\frac{(n+1)!}{s^{n+2}}$
It follows, by the principle of mathematical induction, that the transform pair must be valid for all nonnegative n.

