Ex: \quad The following Matlab ${ }^{\circledR}$ code shows how to diagonalize a matrix A :

$$
A=S \Lambda S^{-1}
$$

where
S has eigenvectors as its columns
Λ is diagonal with eigenvalues on its diagonal

```
syms a b c d
syms A S D
\(A=[a, b ; c, d]\)
A \(=\)
\(\left[\begin{array}{lll}a, & b \\ c, & d\end{array}\right]\)
\([\mathrm{V}, \mathrm{D}]=\operatorname{eig}(\mathrm{A})\)
```



```
\({ }_{\mathrm{D}}{ }^{1}=\)
```



```
Snum \(=[-1,1 ; 1,0]\) '
Snum =
    \(\begin{array}{rr}-1 & 1 \\ 1 & 0\end{array}\)
Dnum \(=[2,0 ; 0,3]\)
\(\begin{array}{rr}\text { Dnum } & = \\ 2 & 0 \\ 0 & 3\end{array}\)
Anum = Snum * Dnum * inv(Snum)
Anum \(=\)
        \(\begin{array}{ll}3 & 1 \\ 0 & 2\end{array}\)
[Vnum,Dnum] \(=\) eig(Anum)
Vnum \(=\)
    \(1 \quad-0.70711\)
Dnum \(\begin{array}{rr}= & \\ 3 & 0 \\ 0 & 2\end{array}\)
```

