DEF: $\quad M_{i j} \equiv \operatorname{minor}_{\text {matrix }_{i j}}($ of square matrix $A) \equiv A$ with row i and column j deleted.
EX:

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 3 & 6 \\
-5 & 1 & 4
\end{array}\right] \\
& M_{12}=\left[\begin{array}{cc}
0 & 6 \\
-5 & 4
\end{array}\right] \\
& M_{32}=\left[\begin{array}{ll}
1 & 2 \\
0 & 6
\end{array}\right]
\end{aligned}
$$

TOOL: One method of computing the determinant of matrix A involves minors for one row or one column of a matrix.

$$
\begin{aligned}
& |A|=\sum_{j} a_{i j}(-1)^{i+j}\left|M_{i j}\right| \text { where } i \text { is constant (i.e., one row) } \\
& |A|=\sum_{i} a_{i j}(-1)^{i+j}\left|M_{i j}\right| \text { where } j \text { is constant (i.e., one column) }
\end{aligned}
$$

EX:

$$
A=\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 3 & 6 \\
-5 & 1 & 4
\end{array}\right]
$$

Using minors of row one, we have

$$
|A|=1(-1)^{1+1}\left\lfloor\left.\left[\begin{array}{ll}
3 & 6 \\
1 & 4
\end{array}\right]+0 \cdot(-1)^{1+2}\left[\begin{array}{cc}
0 & 6 \\
-5 & 4
\end{array}\right] \right\rvert\,+2(-1)^{1+3}\left[\begin{array}{cc}
0 & 3 \\
-5 & 1
\end{array}\right]\right.
$$

We apply the determinant calculation recursively to the 2×2 matrices (using the minors of the top row of each one):

$$
\begin{aligned}
|A|= & 1 \cdot\left(3(-1)^{1+1} \cdot\left[[4]\left|+6(-1)^{1+2} \cdot\right|[1] \mid\right)\right. \\
& -0 \cdot\left(0(-1)^{1+1} \cdot\left[[4]\left|+6(-1)^{1+2} \cdot\right|[-5] \mid\right)\right. \\
& +2 \cdot\left(0(-1)^{1+1} \cdot|[1]|+3(-1)^{1+2} \cdot|[-5]|\right)
\end{aligned}
$$

NOTE: The power of -1 for the new, smaller minor matrices is determined by the index within that minor matrix rather than the index within the original matrix.

$$
\begin{aligned}
|A|= & 1 \cdot(3 \cdot 4-6 \cdot 1) \\
& -0 \cdot(0 \cdot 4-6 \cdot(-5)) \\
& +2 \cdot(0 \cdot 1-3 \cdot(-5)) \\
|A|= & 1 \cdot(6) \\
& -0 \cdot(30) \\
& +2 \cdot(15)
\end{aligned}
$$

$$
|A|=36
$$

NOTE: We may use minors for a row or column containing many entries equal to zero to reduce calculations.

