OP-AMPS RC/RL CIRCUITS Example 1

Rail voltages = ± 12 V

After being closed for a long time, the switch opens at $t = t_0$.

- a) Choose either an R or L to go in box **a** and either an R or L to go in box **b** to produce the $v_0(t)$ shown above. (Note that v_0 stays low forever after $t_0 + 120$ ns.) Specify which element goes in each box and its value. Make sure $-10 \text{ V} \le v_2 \le 10 \text{ V}$ at all times.
- b) Sketch $v_1(t)$, showing numerical values appropriately.
- c) Sketch $v_2(t)$, showing numerical values appropriately.
- d) Sketch v₃(t). Show numerical values for $t < t_0$, for $t_0 < t < t_0 + 120$ ns, and for $t > t_0 + 120$ ns. Use the ideal model of the diode: when forward biased, its resistance is zero; when reverse biased, its resistance is infinite.

Sol'n: a) First we calculate V_1 . The op-amp input draws no current, implying that we may ignore the op-amp when calculating V_1 .

Using superposition, we sum the values of V, obtained when one source at a time is turned on.

Case I: 6 mA on, 3V off

$$V_{11} = -6mA \cdot 1k R = -6V$$

case II: 6 mA off, 3V on

We sum V_{11} and V_{12} to get V_1 . $V_1 = V_{11} + V_{12} = -6V + 3V = -3V$ For v_0 to be -12V at $t=t_0^-$ we must have $V_2 > V_1$. This condition is satisfied by placing either an L or R in box **a**. If we have an L in box **a**, then it will act like a wire at $t=t_0$, making V_2 equal to 0V. If we an R in box **a**, however, we will have a V-divider:

$$V_2 = 6V \cdot \frac{R}{R+30K\Omega} > 0V$$

Now we consider what might be in box **b**. If **a** is an L and **b** is an R, then $i_{L}(t_{0}^{+}) = i_{L}(t_{0}^{-})$ will flow thru the BOKSZ and the R in **b** when the switch opens. The direction of current flow will result in $v_{2} < 0v$. For sufficiently large R, we can have $v_{2}(t_{0}^{+}) < v_{1}$. Later, as the current in the L decays toward OA, we will again have $v_{2} < v_{1}$, causing v_{0} to drop to -12V again. Thus, this sol'n will work.

a = L b = R

To be thorough, we consider what would happen for the case $\mathbf{a} = \mathbb{R}$ and $\mathbf{b} = \mathbb{L}$. This would cause a short across the 61 source for $t < t_0$ since L = wire. This will not work!

Now we find $v_2(t)$ using the general form of solution for RL problems: $v_2(t>0) = v_2(t \rightarrow \infty) + \left[v_2(0^+) - v_2(t \rightarrow \infty)\right] e^{-t/\frac{L}{R_{Th}}}$

where we take to to be to = 0 s.

 $t=0^{-1}: V_{2}$ $= wire = \begin{bmatrix} V_{2} & 30k \cdot 2 & 6V \\ & & & & \\ & & & & \\ = wire = \begin{bmatrix} V_{2} & 0 \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & &$

The R is a 2nd circuit, (in parallel with the L and 30 K.S.), across the GV source. Thus, we may ignore R.

$$i_{L}(0^{-}) = \frac{6V}{30 \text{ kg}} = \frac{1}{5} \text{ mA}$$

 $t = 0^{\frac{1}{2}}$ V_{2} V_{2} $V_{2} (0^{+}) = -i_{L}(0^{+})(30k\Omega + R)$

or $v_2(0^+) = -\frac{1}{5}mA(30kR + R)$

We choose L and R values that yield

$$v_2(t) = v_1$$
 at $t = 120 \text{ ns}$, the duration of
the pulse. Recall that $v_1 = -3V$.
 $v_2(t = 120 \text{ ns}) = -\frac{1}{5} \text{ mA}(30 \text{ kg} + \text{R}) e^{-\frac{t + 120 \text{ ns}}{L/(30 \text{ kg} + \text{R})}} = -3V$
We cannot solve this egn uniquely for R and L.
Since it is difficult to solve for R, we
choose a value of R and then solve for L.
We must have $v_2(0^+) < -3V$ to get a pulse
for v_0 .
 $\therefore -\frac{1}{5} \text{ mA}(30 \text{ kg} + \text{R}) < -3V$
work
We see that any R will dexcept R=0 that
would short out the GV source for t < to.
A convenient value for R is 20 kg . This gives
 $v_2(0^+) = -\frac{1}{5} \text{ mA}(30 \text{ kg} + 20 \text{ kg}) = -10V$
Now we can solve for L and see if we get
a reasonable value.
 $v_2(t = 120 \text{ ns}) = -10V e^{-\frac{120 \text{ ns}}{L/50 \text{ kg}}} = -\frac{3V}{10}$
or $-\frac{120 \text{ ns}}{L/50 \text{ kg}} = Ln(\frac{3}{10})$

or
$$\frac{L}{50k\Omega} = -\frac{120 \text{ ns}}{\ln(\frac{3}{10})} = -\frac{120 \text{ ns}}{-1.204} = 99.7 \text{ ns}$$

or $\frac{L}{2} \approx 100 \text{ ns}$
or $L \approx 100 \text{ ns}$
or $L \approx 100 \text{ n} \cdot 50 \text{ H} = 5 \text{ mH}$
Summary: $R = 20 \text{ k}\Omega$, $L = 5 \text{ mH}$

b) and c) We use the above results to make our plot:

d) The diode acts like a wire when current flows in the direction of the arrow in the diode symbol. Otherwise, the diode is an open circuit.

For $t < t_0$, $v_0 = -12V$ so the diode looks like a wire shorting v_3 to OV. Applies to $t > t_0 + 120$ ns, too. For $t > t_0 \notin v_0 = +12V$, the diode acts like an open, and v_3 is pulled up to $v_0 = 12V$ by the 15k Σ resistor, which has no V-drop.

