Ex：

Rail voltages $= \pm 12 \mathrm{~V}$
After being closed for a long time，the switch opens at $t=t_{\mathrm{o}}$ ．

a）Choose either an R or L to go in box \mathbf{a} and either an R or L to go in box \mathbf{b} to produce the $\mathrm{v}_{\mathrm{o}}(\mathrm{t})$ shown above．（Note that v_{o} stays low forever after $\mathrm{t}_{\mathrm{o}}+120 \mathrm{~ns}$ ．）Specify which element goes in each box and its value．Make sure $-10 \mathrm{~V} \leq \mathrm{v}_{2} \leq 10 \mathrm{~V}$ at all times．
b）Sketch $\mathrm{v}_{1}(\mathrm{t})$ ，showing numerical values appropriately．
c）Sketch $v_{2}(t)$ ，showing numerical values appropriately．
d）Sketch $\mathrm{v}_{3}(\mathrm{t})$ ．Show numerical values for $t<t_{\mathrm{o}}$ ，for $t_{\mathrm{O}}<t<t_{\mathrm{o}}+120 \mathrm{~ns}$ ，and for $t>t_{\mathrm{O}}+120 \mathrm{~ns}$ ．Use the ideal model of the diode：when forward biased，its resistance is zero；when reverse biased，its resistance is infinite．

Sol'n: a) First we calculate v_{1}. The op-amp input draws no current, implying that we may ignore the op-amp when calculating v_{1}.

Using superposition, we sum the values of v_{1} obtained when one source at a time is turned on.

Case I: 6 mA on, 3 V off

$$
\begin{aligned}
& v_{11}=V \text { drop across } 1 \mathrm{k} \Omega . \\
& v_{11}=-6 \mathrm{~mA} \cdot 1 \mathrm{k} \Omega=-6 \mathrm{~V}
\end{aligned}
$$

Case II: 6 mA off, 3 v on

We sum v_{11} and v_{12} to get v_{1}.

$$
v_{1}=v_{11}+v_{12}=-6 V+3 V=-3 V
$$

For v_{0} to be -12 V at $t=t_{0}^{-}$we must have $v_{2}>v_{1}$. This condition is satisfied by placing either an L or R in box a. If we have an L in box a, then it will act like a wire at $t=t_{0}^{-}$, making v_{2} equal to $O V$. If we an R in box a_{1}, however, we will have a V-divider:

$$
V_{2}=6 \mathrm{~V} \cdot \frac{R}{R+30 \mathrm{~K} \Omega}>0 \mathrm{~V}
$$

Now we consider what might be in box b. If a is $a n k$ and b is an R, then $i_{L}\left(t_{0}^{+}\right)=i_{L}\left(t_{0}^{-}\right)$will flow thru the $30 \mathrm{k} \Omega$ and the R in b when the switch opens. The direction of current flow will result in $v_{2}<O V$. For sufficiently large R, we can have $v_{2}\left(t_{0}{ }^{+}\right)<v_{1}$. Later, as the current in the L decays toward $O A$, we will again have $v_{2}<v_{1}$, causing v_{0} to drop to -12 V again. Thus, this sol'n will work.

$$
a=L \quad b=R
$$

To be thorough, we consider what would happen for the case $a=R$ and $b=L$. This would cause a short across the 6 V source for $t<t_{0}$ since $L=$ wire. This will not work!

Now we find $V_{2}(t)$ using the general form of solution for RL problems:

$$
v_{2}(t>0)=v_{2}(t \rightarrow \infty)+\left[v_{2}\left(0^{+}\right)-v_{2}(t \rightarrow \infty)\right] e^{-t / \frac{L}{R_{T h}}}
$$

where we take t_{0} to be $t_{0}=0$ s.

$$
t=0^{-}:=
$$

The R is a and circuit, (in parallel with the L and $30 \mathrm{k} \Omega$), across the 6 V source. Thus, we may ignore R.

$$
i_{L}\left(\mathrm{O}^{-}\right)=\frac{6 \mathrm{~V}}{30 \mathrm{k} \Omega}=\frac{1}{5} \mathrm{~mA}
$$

$$
t=0^{+}:
$$

$$
v_{2}\left(0^{+}\right)=-i_{L}\left(0^{+}\right)(30 k \Omega+R)
$$

or $v_{2}\left(\mathrm{O}^{+}\right)=-\frac{1}{5} \mathrm{~mA}(30 \mathrm{k} \Omega+R)$

$$
\begin{aligned}
& v_{2}(t \rightarrow \infty)=O V \text { since there is no } \\
& \text { power source }
\end{aligned}
$$

$R_{T h}$ for $\frac{L}{R_{T h}}$ time constant $=R$ seen
looking into terminals where L is attached, (but with L removed):

$$
R_{T h}=30 \mathrm{k} \Omega+R
$$

$$
\therefore v_{2}(t>0)=0 V+\left[-\frac{1}{5} m A(30 k+R)-0 V\right] e^{-\frac{t}{L /(30 k \Omega+R)}}
$$

sketch:

We choose L and R values that yield $v_{2}(t)=v_{1}$ at $t=120 \mathrm{~ns}$, the duration of the pulse. Recall that $v_{1}=-3 v$. $v_{2}(t=120 n s)=-\frac{1}{5} m A(30 k \Omega+R) e^{-\frac{t=120 n s}{L /(30 k \Omega+R)}}=-3 V$

We cannot solve this eq'n uniquely for R and L. Since it is difficult to solve for R, we choose a value of R and then solve for L.

We must have $v_{2}\left(0^{+}\right)<-3 v$ to get a pulse for v_{0}.

$$
\therefore-\frac{1}{5} m A(30 k \Omega+R)<-3 V
$$

work
We see that any R will except $R=0$ that would short out the 6 V source for $t<t_{0}$.

A convenient value for R is $20 \mathrm{k} \Omega$. This gives

$$
v_{2}\left(0^{+}\right)=-\frac{1}{5} m A(30 k \Omega+20 \mathrm{k} \Omega)=-10 \mathrm{~V}
$$

Now we can solve for L and see if we get a reasonable value.

$$
\begin{aligned}
& v_{2}(t=120 n s)=-10 \mathrm{~V} e^{-\frac{120 n s}{L / 50 k \Omega}}=-3 V \\
& \text { or } e^{-\frac{120 n s}{L / 50 \mathrm{~K} \Omega}}=\frac{-3 \mathrm{~V}}{-10 \mathrm{~V}}=\frac{3}{10} \\
& \text { or } \quad-\frac{120 n s}{L / 50 \mathrm{~K} \Omega}=\ln \left(\frac{3}{10}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { or } \frac{L}{50 \mathrm{k} \Omega}=\frac{-120 \mathrm{~ns}}{\ln \left(\frac{3}{10}\right)}=\frac{-120 \mathrm{~ns}}{-1.204}=99.7 \mathrm{~ns} \\
& \text { or } \frac{L}{50 \mathrm{k} \Omega} \approx 100 \mathrm{~ns} \\
& \text { or } L \approx 100 \mathrm{n} \cdot 50 \mathrm{k} H=5 \mathrm{mH} \\
& \text { Summary: } R=20 \mathrm{k} \Omega, L=5 \mathrm{mH}
\end{aligned}
$$

b) and c) We use the above results to make our plot:

d) The diode acts like a wire when current flows in the direction of the arrow in the diode symbol. otherwise, the diode is an open circuit.

For $t<t_{0}, v_{0}=-12 \mathrm{~V}$ so the diode looks like a wire shorting v_{3} to oV. Applies to $t>t_{0}+120 n s$, too. For $t>t_{0} \& v_{0}=+12 V$, the diode acts like an open, and v_{3} is pulled up to $v_{0}=12 \mathrm{~V}$ by the $15 \mathrm{k} \Omega$ resistor, which has no V-drop.

