Ex:

Rail voltage = $\pm 12 \text{ V}$

After being open for a long time, the switch closes at $t = t_0$.

- a) Choose either an R or L to go in box a and either an R or L to go in box b to produce the v_o(t) shown above. (Note that v_o stays high forever after t_o + 1 μs.)
 Specify which element goes in each box and its value.
- b) Sketch $v_1(t)$, showing numerical values appropriately.
- c) Sketch v₂(t), showing numerical values appropriately.
- d) Sketch $v_3(t)$. Show numerical values for $t < t_0$, for $t_0 < t < t_0 + 1$ µs, and for $t_0 < t < t_0 < t < t < t_0 < t_0 < t < t_0 < t_0 < t < t_0 < t_0 < t < t_0 < t < t_0 < t < t_0 < t_0 < t < t_0 < t$

sol'n:a) vo starts out with a negative value, implying vz < v, for the op-amp inputs.

If we place an L in box b, then at time t_0 , (when the L acts like a wire), we would have $v_2 = 0V$.

Thus, we need to know the value of V_1 . Since the inputs of the op-amp act like sensors that draw no current, we can solve for V_1 by considering only the 6V source, the 3 kSL resistor, and the 1 mA source.

We have $V_1 = -6V - 1 \text{ mA} \cdot 3 \text{ k} \Omega = -9V$. Note that the 1 mA must flow through the 3 k Ω resistor since no current flows into the op-amp.

We now see that an L in box b is impossible, as it would yield $v_2 = 0V > V_1$, implying $v_0 > 0V$ at time $t = t_0$.

Thus, we must have an R in box b. To have a dynamic time response, we must have an L in a.

The circuit that determines vz is as follows:

We may assume to=0 for convenience.

At t=0, the circuit has reached equilibrium and L=wire.

$$i_L(o^-) = -\frac{12V}{R + 10k\Omega}$$

$$v_2(o^-) = i_L(o^-) \cdot R = -12V \cdot \frac{R}{R + 10 k \Omega}$$

We need to have $v_2(0^-) < -9V$ at $t=0^-$. This means that we must use $R > 30k\Omega$ since -9V is 3/4 of -12V and $R=30k\Omega$ gives $R = \frac{3}{4}$. We return to this later.

Since i_{\perp} can't change instantly, we will have $i_{\perp}(0^{+}) = i_{\perp}(0^{-})$.

It follows that $v_2(0^+) = i_L(0^+)R = v_2(0^-)$.

$$\therefore V_2(0^+) = -12V \frac{R}{R + 10k\Omega}$$

This is the first piece of information we need for the general form of soln for $v_2(t)$:

$$v_z(t) = v_z(t \rightarrow \infty) + [v_z(0^+) - v_z(t \rightarrow \infty)] e^{-t/\frac{L}{R_{Th}}}$$

For $t\rightarrow\infty$, the switch is closed and the current in L will decay toward zero. Also, the L will look like a wire.

We have $V_2(t\rightarrow \infty) = 0V$.

To find RTh for the time constant, we remove L and look into the circuit from those terminals. (If there are independent sources, we turn RTh them off)

We see that $R_{Th} = R$. Now we can write an expression for $V_2(t)$:

$$v_{2}(t) = ov + \left[v_{2}(o^{+}) - ov\right] e^{-t/\frac{L}{R}}$$
or $v_{2}(t) = -\frac{12VR}{R + lok l} e$

We observe that $v_2(0^+) = v_2(0^-)$ means v_0 will stay low initially, (i.e., $v_0 = -12V$).

 v_0 goes high, (i.e., $v_0 = +12V$), when $v_1 = v_2$ as v_2 approaches ov from below.

From the graph of V_0 , we have $V_1 = V_2$ at $t = 1 \mu s$. Thus, we solve the following egn:

$$-(t=1)/\frac{1}{R}$$

 $v_2(t=1)/\frac{1}{R}$
 $v_2(t=1)/\frac{1}{R}$
 $v_1 = -9v$
 $v_2(t=1)/\frac{1}{R}$

We have only one egn in two variables. Thus, the solution is not unique. Since R appears in several places in the egn, we simplify the problem by choosing R before solving the egn for L.

Earlier, we showed $R > 30 \, \mathrm{k} \, \Omega$. In practice, it is prudent to pick R large enough to a significant difference between $v_2(0^+)$ and v_1 . This results in a smaller time constant, L/R, since v_2 has to climb further before $v_2 = v_1$. This, in turn, allows us to use a smaller L value. On the other hand, we want to avoid a very large R, (much larger than $IM_1\Omega$, for example), owing to possible problems with noise or linaccuracies arising from using currents nearly as small as the minute current flowing into the op-amp.

We use R=110 ks for practicality and convenience.

Then
$$v_2(0^+) = -12V \cdot 110k\Omega = -11V$$

 $110k\Omega + 10k\Omega$

Now we solve
$$v_2(t=lns) = -111/e$$
 = -9V.

or
$$e^{-1\mu S/\frac{L}{110K\Omega}} = -\frac{9V}{-11V} = \frac{9}{11}$$

or, taking
$$Ln$$
 of both sides, $-\frac{1}{L/110k\Omega} = \ln(\frac{9}{11})$

or
$$L = \frac{-1 \, \text{us} \cdot 110 \, \text{k} \Omega}{\ln \left(\frac{9}{11}\right)} = \frac{-110 \, \text{mH}}{-200.7 \, \text{m}}$$

This L value is rather large, meaning that we still need a large time constant.

Some thought shows that there are limits on how small L could be.

If we consider the limiting cases, we have $R = 30k\Omega$ min or $R \rightarrow \infty \Omega$ max.

For
$$R = 30 \text{ K}\Omega$$
 we get $L = -1 \text{ M} \cdot 30 \text{ K}\Omega = \infty \text{ H}$
since $\ln(1) = 0$. $\ln\left(\frac{9}{9}\right)$

For
$$R \rightarrow \infty \Omega$$
 we get $L = -1 \mu s \cdot \infty \Omega = \infty H$
Thus, there is sescaping a large L.

b)
$$V_1(t) = -9V$$
 for all time

c)
$$v_2(t) = -11/e$$
 (shown on above plot)

d) To find v_3 , we model diodes as wires when current flows in the forward direction, which is the direction of the "arrow" in the diode symbol. Otherwise, the diode is an open.

For $v_0 = -12V$, our circuit model is

 $V_3 = OV$ since the diode on the lower left shorts v_3 to reference.

Thus, $v_3 = 0V$ whenever $V_0 = -12V$. In other words, $V_3 = 0V$ for $t < t_0 + l_0 t$. For $v_0 = +12V$, our circuit model is

 $V_3 = + 12V$ since the diode on the upper right shorts V_3 to V_0 .

Thus, v3 = +12V for t > to + 1 us.

