Tool：By shifting time $t$ ，the phase shift of an AC current waveform may be set to zero，and the phase shift of the AC voltage waveform may be written as the difference，$\phi_{v-i}$ ， between the voltage phase shift and the current phase shift：

$$
\begin{aligned}
& i(t)=I_{m} \cos (\omega t), \text { and } \\
& v(t)=V_{m} \cos \left(\omega t+\phi_{v-i}\right) .
\end{aligned}
$$

The power waveform may then be written as follows：

$$
p(t)=\mathbf{P}+\mathbf{P} \cos (2 \omega t)-\mathbf{Q} \sin (2 \omega t)
$$

where

$$
\begin{aligned}
& \mathbf{P}=\frac{V_{m} I_{m}}{2} \cos \left(\phi_{v-i}\right) \text { and } \\
& \mathbf{Q}=\frac{V_{m} I_{m}}{2} \sin \left(\phi_{v-i}\right)
\end{aligned}
$$

Tool：The phasor for the AC power waveform，is known as complex power， $\mathbf{S}$ ，and while $\mathbf{S}$ technically describes only the sinusoidal part of the waveform，the real part of $\mathbf{S}$ is equal to the Average Power（a．k．a．DC power）， $\mathbf{P}$ ：

$$
\mathbf{S}=\mathbf{P}+j \mathbf{Q}
$$

Thus，the complex power（phasor）contains all the information about the power．
DEF：$\quad \mathbf{P} \equiv$ Average Power $\equiv$ DC power $\equiv$ Active power $\equiv$ Real power，units $=$ Watts $(\mathrm{W})$
DEF：$\quad \mathbf{Q} \equiv$ Reactive Power，units volt－amps reactive $=(\mathrm{VAR})$
DEF：$\quad \mathbf{S} \equiv$ Complex Power，units volt－amps $=(\mathrm{VA})$
DEF：$\quad|\mathbf{S}| \equiv$ Apparent Power $=\sqrt{\mathbf{P}^{2}+\mathbf{Q}^{2}}$, units $=(\mathrm{VA})$
DEF：$\quad$ Power Factor $\equiv \cos \left(\theta_{v-i}\right)=\mathbf{P} / \mathbf{S}$ ，unitless

Note：All power units are equivalent to Watts，but distinct letters are used so that power terms for $\mathbf{P}, \mathbf{Q}$ ，and $\mathbf{S}$ ，may be distinguished from one another by the units when they are written as numbers．（Note that $\mathbf{S}$ may lack an imaginary part．）

Tool: Complex power, $\mathbf{S}$, may be computed using the following formulas involving phasors $\mathbf{I}$ and $\mathbf{V}$ for current and voltage, and/or impedance $Z$ :

$$
\mathbf{S}=\frac{1}{2} \mathbf{V} \mathbf{I}^{*}=\frac{|\mathbf{I}|^{2} Z}{2}=\frac{|\mathbf{V}|^{2}}{2 Z^{*}}=\left|\mathbf{I}_{\mathrm{rms}}\right|^{2} Z=\frac{\left|\mathbf{V}_{\mathrm{rms}}\right|^{2}}{Z^{*}}
$$

where $* \equiv$ conjugate (change all $j$ 's to $-j$ 's), $\mathbf{I}=I_{m} \angle 0^{\circ}, \mathbf{V}=V_{m} \angle \phi_{v-i}$, and $\mathrm{rms} \equiv$ root-mean-square $=\sqrt{\frac{1}{T} \int_{t=0}^{T} f^{2}(t) d t}$ where $T$ is one period of waveform.

Tool: The figure below shows the AC waveforms for $v, i$, and $p$ with variables related to complex power indicated. 100 W average power, 120 VAC at 60 Hz .

time-domain waveform

$$
\begin{aligned}
& i(t)=2.362 \cos (\omega t) \mathrm{A} \\
& v(t)=169.7 \cos \left(\omega t-60^{\circ}\right) \mathrm{V} \\
& p(t)=\mathbf{P}+\mathbf{P} \cos (2 \omega t)-\mathbf{Q} \sin (2 \omega t)
\end{aligned}
$$

phasor

$$
\begin{aligned}
& \mathbf{I}=2.362 \angle 0^{\circ} \mathrm{A} \\
& \mathbf{V}=169.7 \angle-60^{\circ} \mathrm{V} \\
& \mathbf{S}=\mathbf{P}+j \mathbf{Q}=\frac{|\mathbf{V} \| \mathbf{I}|}{2} \cos \left(-60^{\circ}\right) \mathrm{W}+j \frac{|\mathbf{V} \| \mathbf{I}|}{2} \sin \left(-60^{\circ}\right) \mathrm{VAR}
\end{aligned}
$$

