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TUTORIAL: AC POWER

In a linear circuit with sinusoidal source of frequency ω, currents and voltages
are sinusoids of frequency ω.  Power is still calculated as p = iv.  Thus, we
multiply sinusoids, although there is typically a phase difference between the
current and voltage.  We define the phase difference as (θv – θi).  If we also
define im and vm as the amplitudes of current and voltage and adjust the origin
of time so that θi = 0, we have

€ 

p(t) = i(t)v(t) = im cos(ωt) ⋅ vm cos(ωt + θv − θi )

Note that we might try to leave the θi in the current term but the result is quite
awkward to work with.

We apply a standard trigonometric identity to translate the product of sinusoids
into a sum of sinusoids:

€ 

cosA ⋅ cosB = 1
2 cos(A − B) + 1

2 cos(A + B)

where A – B = θv – θi and A + B = 2ωt + θv – θi.

The result is that the power has a constant (or DC) term (that is no longer
dependent on time or frequency) and a sinusoidal signal (that has double the
frequency of the current and voltage):

€ 

p(t) =
imvm
2 cos(θv − θi ) +

imvm
2 cos(2ωt + θv − θi )

Note also that there is a factor of one-half in both terms.  A trick for
remembering these features of the power waveform is to consider the power
waveform when current and voltage are in phase.  In that case, the product of i
and v has the shape of cos2(ωt).  Sketching cos2(ωt) reveals that it is the sum of
cos(2ωt) with amplitude one-half and a DC offset of one-half.

cos at twice frequency, half amplitude

DC offset = one-half1

cos
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If we now think in terms of frequency 2ω instead of ω, we see that the second
term of the power expression is a cosinusoid with a magnitude and phase offset.
In other words, it is a sinusoidal signal represented in polar form.  We may
translate it into rectangular form consisting of a pure cosine and a pure sine:

€ 

imvm
2
cos(2ωt + θv −θi ) =

imvm
2
cos(θv −θi )cos(2ωt) −

imvm
2
sin(θv −θi )sin(2ωt)

Note that this is only the sinusoidal (or AC) part of the power expression.

To simplify the notation, we define P and Q:

€ 

P =
imvm
2
cos(θv −θi )

€ 

Q =
imvm
2
sin(θv −θi )

By coincidence, P appears twice in the complete power expression, meaning we
need only P and Q rather than three different terms:

€ 

p(t) = P + P cos(2ωt) −Qsin(2ωt)
Because we have both P and Q in the AC part of the power, (i.e., the last two
terms),we achieve an economy of notation (and possibly a loss of clarity) by
ignoring the DC part of the power and then using a phasor representation of the
AC part:

€ 

S = P + jQ

Note that the sign is + for Q in the phasor, whereas the sign is – for Q in the
expression for p.  Also, this "complex power", S, happens to have, as its real part,
the average or DC power P.  Strictly speaking, however, the P represents the
cosine part of the AC power.

If we use phasors for the original current and voltage waveforms, we may derive
the following identities:

€ 

S = 1
2 I
* ⋅V = I rms

* ⋅Vrms = I rms
2
Z

Once we have found S, we know P and Q  and, hence, we know the complete
power waveform, p(t).


