EX: \quad You are given the following information about events A, B, and C :

$$
\mathrm{P}(A)=0.625 \quad \mathrm{P}(B)=0.4 \quad \mathrm{P}(A \cap B)=0.125
$$

Which of the following statements must be true? Justify your answers.
a) $\mathrm{P}\left(A \cap B^{\prime}\right)=0.9$
b) $\mathrm{P}(A \cup B)+\mathrm{P}(A \cap B)=1$
c) If $\mathrm{P}(C)=0.5$, then $\mathrm{P}(A \cap C)>\mathrm{P}(A \cap B)$
d) $\mathrm{P}\left(A \cup B^{\prime}\right)>\mathrm{P}\left(B \cup A^{\prime}\right)$

SOL'N: a) Need not be true. Actually, $\mathrm{P}\left(A \cap B^{\prime}\right)=0.9$ cannot be true. If this were true, we would have $\mathrm{P}(A \cap B)+\mathrm{P}\left(A \cap B^{\prime}\right)=0.125+0.9=\mathrm{P}(A)$ [by Law of Total Probability] $=1.025>1$. This is impossible.
b) Need not be true. Actually, $\mathrm{P}(A \cup B)+\mathrm{P}(A \cap B)=1$ cannot be true. We can calculate $\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)=0.625+0.4-0.125$ $=0.9$. Thus, $\mathrm{P}(A \cup B)+\mathrm{P}(A \cap B)=0.9+0.125=1.025 \neq 1$. In general, $\mathrm{P}(A \cup B)+\mathrm{P}(A \cap B)$ may take on values in the range 0 to 2 .
c) Need not be true. But for a missing = sign, this would be true. That is, if we had \geq instead of $>$, then we could say the statement must be true. We observe that $\mathrm{P}(A)=0.625$ and $\mathrm{P}(C)=0.5$ implies that A and C must overlap by at least 0.125 in order for $\mathrm{P}(A \cup C)$ to be ≤ 1. Thus, $\mathrm{P}(A \cap C) \geq 0.125$ $=\mathrm{P}(A \cap B)$. But for the missing =, we could say the statement must be true.
d) Must be true. We can calculate both quantities.

$$
\begin{aligned}
& \mathrm{P}\left(A \cup B^{\prime}\right)=1-\left[1-\mathrm{P}\left(A \cup B^{\prime}\right)\right]=1-[\mathrm{P}(B)-\mathrm{P}(A \cap B)] \\
& =1-[0.4-0.125]=1-0.275=0.725
\end{aligned}
$$

$\mathrm{P}\left(B \cup A^{\prime}\right)=1-\left[1-\mathrm{P}\left(B \cup A^{\prime}\right)\right]=1-[\mathrm{P}(A)-\mathrm{P}(A \cap B)]$
$=1-[0.625-0.125]=1-0.5=0.5$
Thus, $\mathrm{P}\left(A \cup B^{\prime}\right)=0.725>0.5=\mathrm{P}\left(B \cup A^{\prime}\right)$.

