EX: You are given the following information about events *A*, *B*, and *C*:

P(A) = 0.625 P(B) = 0.4 $P(A \cap B) = 0.125$

Which of the following statements *must* be true? Justify your answers.

- a) $P(A \cap B') = 0.9$
- b) $P(A \cup B) + P(A \cap B) = 1$
- c) If P(C) = 0.5, then $P(A \cap C) > P(A \cap B)$
- d) $P(A \cup B') > P(B \cup A')$
- **SOL'N:** a) Need not be true. Actually, $P(A \cap B') = 0.9$ *cannot* be true. If this were true, we would have $P(A \cap B) + P(A \cap B') = 0.125 + 0.9 = P(A)$ [by Law of Total Probability] = 1.025 > 1. This is impossible.
 - b) Need not be true. Actually, $P(A \cup B) + P(A \cap B) = 1$ *cannot* be true. We can calculate $P(A \cup B) = P(A) + P(B) P(A \cap B) = 0.625 + 0.4 0.125$ = 0.9. Thus, $P(A \cup B) + P(A \cap B) = 0.9 + 0.125 = 1.025 \neq 1$. In general, $P(A \cup B) + P(A \cap B)$ may take on values in the range 0 to 2.
 - c) Need not be true. But for a missing = sign, this would be true. That is, if we had \geq instead of >, then we could say the statement must be true. We observe that P(A) = 0.625 and P(C) = 0.5 implies that A and C must overlap by at least 0.125 in order for P(A $\cup C$) to be ≤ 1 . Thus, P(A $\cap C$) ≥ 0.125 = P(A $\cap B$). But for the missing =, we could say the statement must be true.
 - d) Must be true. We can calculate both quantities. $P(A \cup B') = 1 - [1 - P(A \cup B')] = 1 - [P(B) - P(A \cap B)]$ = 1 - [0.4 - 0.125] = 1 - 0.275 = 0.725

 $P(B \cup A') = 1 - [1 - P(B \cup A')] = 1 - [P(A) - P(A \cap B)]$ = 1 - [0.625 - 0.125] = 1 - 0.5 = 0.5 Thus, P(A \cup B') = 0.725 > 0.5 = P(B \cup A').