Ex：A company has found that a certain fraction of the parts it orders are counterfeit． That fraction depends on which company the parts were ordered from．The parts are mixed together in a stockroom，so the selection of parts may be viewed as an experiment in probability．The following information is known．
$A \equiv$ event that parts selected are from company A
$B \equiv$ event that parts selected are from company B
$C \equiv$ event that parts selected are counterfeit
$P(A)=0.35$
$P(B)=0.25$
$P(C)=0.10$
$P(A \cap C)=0.08$
$P(B \cap C)=0.01$
What is the probability of picking a part that is counterfeit and not from either company $A$ or $B$ ？Note that we may write this probability as $P\left(C \cap(A \cap B)^{\prime}\right)$

Sol＇n：Since we are calculating the probability of an intersection，we consider using the law of total probability．To do so，we need a partition of the sample space，$S$ ，of all possible outcomes．We may safely assume that $A$ and $B$ are mutually exclusive，since they are distinct companies．To complete the partition，we use the rest of $S$ ．That is，we use $(A \cap B)$＇．Our partition is $A, B$ ，and $(A \cap B)^{\prime}$ ．

Venn diagram：


We want the area in $C$ and between $A$ and $B$ in the Venn diagram．By the law of total probability，we use the following calculation of the probability of $C$ ：

$$
P(C)=P(A \cap C)+P(B \cap C)+P\left(C \cap(A \cap B)^{\prime}\right)
$$

We know the values of all the terms except the one we are looking for．

$$
0.10=0.08+0.01+P\left(C \cap(A \cap B)^{\prime}\right)
$$

We solve for our unknown value to complete the solution．

$$
P\left(C \cap(A \cap B)^{\prime}\right)=0.10-(0.08+0.01)=0.01
$$

