DEF:	Experiment \equiv process that generates data
	Ex: Flip a fair coin twice.
Def:	Observation \equiv recording of information Ex: We flip the coin two times and get Heads Tails (or HT).
Def:	Outcome \equiv result of a <i>hypothetical</i> experiment; an element or member or sample point of sample space. Ex: When we flip the coin twice, there are four possible outcomes: HH, HT, TH, TT.
Def:	Sample Space $\equiv S \equiv$ the set of all possible outcomes of a statistical experiment Ex: When we flip the coin twice, <i>S</i> is the set of possible outcomes: $S = \{HH, HT, TH, TT\}$
DEF:	Event \equiv subset of sample space <i>S</i> Ex: When we flip the coin twice, we may define an event <i>A</i> to be "we get Heads on the first flip". $A = \{HH, HT\}$
Def:	 Probability (of event A) ≡ weight (of event A) ≡ likelihood of obtaining outcome in A as the result of a hypothetical experiment Ex: For event A defined above, P(A) = 1/2 (meaning we have a 50-50 chance of getting Heads on the first flip).
Def:	 Complement (of event A) ≡ A' ≡ subset of all elements of sample space S that are not in A Ex: For event A defined above, A' = {TH, TT} since the outcomes that start with Tails are the possible outcomes that are not in A.
Def:	 Intersection (of events A and B) ≡ A∩B ≡ event consisting of all elements of sample space S that are common to A and B Ex: Suppose we define another event B to be "the outcome has one Heads and one Tails". B = {HT, TH} For event A defined earlier, A∩B = {HT} since HT is in both A and B NOTE: In general, we can have multiple outcomes in the intersection.
	i sere in Sere in the sere in the sere in the intersection.

- **DEF:** Mutually exclusive (events *B* and *C*) \equiv disjoint (events *B* and *C*) \equiv *B* and *C* have no elements in common $\equiv B \cap C = \emptyset$ (empty set)
 - Ex: If we define event $C = \{HH\}$, then B (from earlier) and C are mutually exclusive since they have no elements (i.e., outcomes) in common. $B \cap C = \emptyset$
- **DEF:** Union (of events A and B) $\equiv A \cup B \equiv$ event consisting of all elements of sample space S that are in either A or B or both

Ex: For *A* and *B* defined above, the union of *A* and *B* has three elements: $A \cup B = \{HH, HT, TH\}$

- **NOTE:** If an outcome is in both events *A* and *B*, it appears only once in the union.
- **DEF:** Partition $(A_1, A_2, A_3, ..., A_n \text{ of sample space } S) \equiv \text{events } A_1, A_2, A_3, ..., A_n \text{ are mutually exclusive and the union of <math>A_1, A_2, A_3, ..., A_n$ is $S \equiv A_i \cap A_j = \emptyset$ when $i \neq j$ and $A_1 \cup A_2 \cup A_3 \cup ... \cup A_n = S$

Ex: If we define a new event, $D = \{TT\}$, then B, C, and D form a partition.

 $B = \{HT, TH\}$ $C = \{HH\}$ $D = \{TT\}$

Each outcome in sample space, S, appears in B, C, or D once and only once.