Ex: \quad Three companies, A, B, and C provide cell-phone coverage in a city. For a randomly chosen location in the city, the probability of coverage for the first two companies is as follows:

$$
P(A)=0.8 \quad P(B)=0.75
$$

The following probabilities of coverage by company A or B or by B and C are also known:

$$
P(A \cup B)=0.9 \quad P(B \cap C)=0.45
$$

a) Find the probability, $P\left(A^{\prime}\right)$, of not having coverage from company A.
b) Find the probability, $P(A \cap B)$, of having coverage from both company A and company B.
c) Company A claims their probability of coverage, $P(A)$, is higher than company C^{\prime} 's probability of coverage, $P(C)$. Determine whether this statement is true or false, and justify your answer.
d) Find the smallest possible value the probability, $P(B \cup C)$, of having coverage from company B or company C or both can be. (In case you have two cell phones...)

Sol'n: The Venn diagram below shows the information that is known about events A, B, and C. Areas in the diagram correspond to probabilities.

Because $P(C)$ is unknown, the area for C is shown open-ended.

We must be careful to draw only conclusions that follow from the information given in the problem. The exact value of $P(A \cap B \cap C)$, for example, is unknown, although the diagram shows it as 0.38 .
a) For any event A, the probability of the complement of A, A^{\prime}, is one minus the probability of A :

$$
P\left(A^{\prime}\right)=1-P(A)
$$

Using numerical values yields the answer:

$$
P\left(A^{\prime}\right)=1-P(A)=1-0.8
$$

Note: $\quad A$ and A^{\prime} form a (total) partition. Together they account for all possibilities, (i.e., the entire sample space), and they are mutually exclusive.
b) To find $P(A \cap B)$, we use the equation for $P(A \cup B)$:

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

Rearranging the equation yields the value of $P(A \cap B)$:

$$
P(A \cap B)=P(A)+P(B)-P(A \cup B)
$$

Substituting numerical values given in the problem, we have the following result:

$$
P(A \cap B)=0.8+0.75-0.9=0.65
$$

We could also use the Venn diagram and determine the area of the intersection of A and B. Counting the green and brown squares in the intersection gives a value of 130 squares/200 squares in the intersection of A and B. In other words, $P(A \cap B)=0.65$.
c) The largest value that $P(C)$ may possibly have, given the information in the problem, occurs if C includes all the area outside of B. In other words, the largest possible value for $P(C)$ is $P(C)=P(B \cap C)+P\left(B^{\prime}\right)$:

$$
\max P(C)=P(B \cap C)+1-P(B)=0.45+1-0.75=0.70
$$

Using the Venn Diagram, we would have the following picture:

Everything inside the dashed red line represents that maximum possible size of C. We count 140 squares lying in C out of the total of 200 . In other words, the maximum possible value of C is $140 / 200=0.7$.
d) Without further knowledge, the smallest possible value of $P(B \cup C)$ is the larger of $P(B)$ and $P(C)$. This follows because the union of two events includes both events. Thus, $P(B \cup C) \geq P(B)$ and $P(B \cup C) \geq P(C)$. Since $P(C)$ is unspecified, it is possible that C lies entirely in B. This yields the smallest possible value for $P(C)$ and, therefore, for $P(B \cup C)$. In that case, $P(B \cup C)=P(B)$, since having C inside B implies $P(C)>P(B)$:

$$
\min P(B \cup C)=P(B)=0.75
$$

