Ex: Consider a lie detector test. Notation for this problem is as follows:

$$
\begin{aligned}
& -\equiv \text { detector says you Lied } \\
& +\equiv \text { detector says you told the Truth } \\
& L \equiv \text { you did Lie } \\
& T \equiv \text { you told the Truth }
\end{aligned}
$$

The following information is given:

$$
\begin{aligned}
& P(-\mid L)=0.89 \\
& P(+\mid L)=0.11 \\
& P(-\mid T)=0.1 \\
& P(+\mid T)=0.9
\end{aligned}
$$

Determine the probability, $\mathrm{P}(L I-)$, that you actually lied if the lie detector result says you lied. Our intuition might suggest an answer of approximately $90 \%$.

Sol'N: Using Bayes' Theorem, we calculate the probability:

$$
P(L \mid-)=\frac{P(-\mid L) P(L)}{P(-)}
$$

where

$$
P(-)=P(-\mid L) P(L)+P(-\mid T) P(T)
$$

We need to know $P(L)$ and $P(T)$ to solve this problem.
Suppose we have the following additional information:

$$
\begin{aligned}
& P(L)=0.05 \\
& P(T)=0.95
\end{aligned}
$$

These values suggest that most people tell the truth. Using these values, we complete the calculation of the desired probability:

$$
P(L \mathrm{I}-)=\frac{0.89(0.05)}{0.89(0.05)+0.1(0.95)} \approx 0.32
$$

There is only a $32 \%$ chance you lied when the detector says you lied.

