Ex: An engineer is trying to analyze a complicated digital chip for which a detailed logic diagram is unavailable. The engineer wants to use probabilities to describe the relationships between bit patterns appearing at different points on the chip.

In particular, there is a place where 2 bits feed into a processing block. After unspecified interactions with other signals, the bits eventually influence the values of 2 bits on a bus connected to the output of the processing block.
The engineer has measured the following probabilities of 0,1 , or 2 bits being high at the inputs of the processor (C):

$$
\mathrm{P}(\mathrm{C}=0)=0.2 \quad \mathrm{P}(\mathrm{C}=1)=0.5 \quad \mathrm{P}(\mathrm{C}=2)=0.3
$$

The engineer has measured the following conditional probabilities of 2 bits being high on the bus (B) given 0,1 , or 2 bits being high at the inputs of the processor (C) :

$$
\mathrm{P}(\mathrm{~B}=2 \mid \mathrm{C}=0)=0.1 \quad \mathrm{P}(\mathrm{~B}=2 \mid \mathrm{C}=1)=0.2 \quad \mathrm{P}(\mathrm{~B}=2 \mid \mathrm{C}=2)=0.7
$$

Now the engineer wants to measure the bits on the bus and calculate the probabilities of input patterns to the processors. Calculate one such term: $\mathrm{P}(\mathrm{C}=2 \mid \mathrm{B}=2)$.

SoL'N: Use Bayes' theorem to flip the conditional probability from B given C to C given B .
We need only show that the events $\mathrm{C}=0, \mathrm{C}=1$, and $\mathrm{C}=2$ are a total partition of the sample space of possible outcomes. Since there are only 2 input bits to the processor, it follows that the only possibilities are that there are 0,1 , or 2 bits high at the inputs. Thus, these events are exhaustive, (i.e., they include all possible outcomes). Note that, since B represents bit lines distinct from those determining C , the statement $\mathrm{C}=0$ allows B to have all possible values. In other words, we have

$$
P(C=0) \equiv P(C=0 \text { and } B=0,1, \text { or } 2)
$$

Similar statements apply to $P(C=1)$ and $P(C=2)$, and we see that the events $\mathrm{C}=0, \mathrm{C}=1$, and $\mathrm{C}=2$ cover the entire sample space.

We also have that the events $\mathrm{C}=0, \mathrm{C}=1$, and $\mathrm{C}=2$ are mutually exclusive: only one of them can be true for the input bits.

Thus, the events $\mathrm{C}=0, \mathrm{C}=1$, and $\mathrm{C}=2$ are exhaustive and mutually exclusive. By definition, then, the events $\mathrm{C}=0, \mathrm{C}=1$, and $\mathrm{C}=2$ form a total partition, allowing us to apply the law of total probability to write the following equation for $P(B=2)$:

$$
P(B=2)=\sum_{i=0}^{2} P(B=2, C=i)=\sum_{i=0}^{2} P(B=2 \mid C=i) P(C=i)
$$

This is the heart of Bayes' theorem, which gives the following equation:

$$
P(C=2 \mid B=2)=\frac{P(B=2, C=2)}{P(B)}=\frac{P(B=2 \mid C=2) P(C=2)}{\sum_{i=0}^{2} P(B=2 \mid C=i) P(C=i)}
$$

Plugging in values given in the problem, we have the following calculation:

$$
P(C=2 \mid B=2)=\frac{0.7 \cdot 0.3}{0.1 \cdot 0.2+0.2 \cdot 0.5+0.7 \cdot 0.3}=\frac{0.21}{0.33} \cong 0.636
$$

