Ex: Consider the problem of modeling the power usage of a light-rail system. We use the following notation:

$$
\begin{aligned}
& \boldsymbol{A}=\text { train is } A \text { ccelerating or decelerating } \\
& \boldsymbol{C}=\text { train is } C \text { oasting } \\
& \boldsymbol{T}=\text { train is stopped } \\
& \boldsymbol{W}=\text { train is consuming more than } 1 \mathrm{MW} \text { of power }
\end{aligned}
$$

We are given that $\{\boldsymbol{A}, \boldsymbol{C}, \boldsymbol{T}\}$ is a total partition of the sample space. The following information is also available:

$$
\begin{aligned}
& P(\boldsymbol{A})=4 / 12 \\
& P(\boldsymbol{T})=1 / 12 \\
& P(\boldsymbol{W} \mid \boldsymbol{A})=5 / 8 \\
& P(\boldsymbol{W} \mid \boldsymbol{T})=1 / 8 \\
& P(\boldsymbol{W})=7 / 24
\end{aligned}
$$

a) Calculate $P(\boldsymbol{C})$.
b) Calculate $P(\boldsymbol{W} \mid \boldsymbol{C})$.

SOL'N: a) Since $\{\boldsymbol{A}, \boldsymbol{C}, \boldsymbol{T}\}$ is a total partition of the sample space, we have

$$
P(\boldsymbol{A})+P(\boldsymbol{C})+P(\boldsymbol{T})=1
$$

or

$$
P(\boldsymbol{C})=1-(P(\boldsymbol{A})+P(\boldsymbol{T}))=1-(4 / 12+1 / 12)=7 / 12 .
$$

b) Using the law of total probability, we have

$$
P(\boldsymbol{W})=P(\boldsymbol{W} \cap \boldsymbol{A})+P(\boldsymbol{W} \cap \boldsymbol{C})+P(\boldsymbol{W} \cap \boldsymbol{T})
$$

or

$$
P(\boldsymbol{W})=P(\boldsymbol{W}, \boldsymbol{A})+P(\boldsymbol{W}, \boldsymbol{C})+P(\boldsymbol{W}, \boldsymbol{T}) .
$$

We can expand the right side using the conditional probability formula:

$$
P(\boldsymbol{A}, \boldsymbol{B})=P(\boldsymbol{A} \mid \boldsymbol{B}) P(\boldsymbol{B})
$$

We use this to expand our previous equation:

$$
P(\boldsymbol{W})=P(\boldsymbol{W} \mid \boldsymbol{A}) P(\boldsymbol{A})+P(\boldsymbol{W} \mid \boldsymbol{C}) P(\boldsymbol{C})+P(\boldsymbol{W} \mid \boldsymbol{T}) P(\boldsymbol{T}) .
$$

The only remaining unknown is $P(\boldsymbol{W} \mid \boldsymbol{C})$, which we can solve for:

$$
P(\boldsymbol{W} \mid \boldsymbol{C})=\frac{P(\boldsymbol{W})-P(\boldsymbol{W} \mid \boldsymbol{A}) P(\boldsymbol{A})+P(\boldsymbol{W} \mid \boldsymbol{T}) P(\boldsymbol{T})}{P(\boldsymbol{C})}
$$

Using values given in the problem, we have

$$
P(\boldsymbol{W} \mid \boldsymbol{C})=\frac{\frac{7}{24}-\left(\frac{5}{8} \frac{4}{12}+\frac{1}{8} \frac{1}{12}\right)}{\frac{7}{12}}=\frac{1}{8} .
$$

