DEF: Bernoulli trials \equiv repeated identical experiments with independent outcomes that are 1 (success) or 0 (failure)

DEF: $\quad p \equiv P(1) \equiv$ probability of success
DEF: $\quad q \equiv P(0) \equiv$ probability of failure $=1-p$
Ex: Flipping a fair coin constitutes a Bernoulli trial. We may define Heads as success, $P($ Heads $)=P(1)=p=0.5$, and Tails as failure, $P($ Tails $)=P(0)=q=1-p=0.5$.
DEF: Binomial distribution $\equiv P(m$ successes in n trials $)={ }_{n} C_{m} \cdot p^{m} q^{n-m}=\frac{n!}{(n-m)!m!} p^{m} q^{n-m}$

Note: The binomial distribution is an example of combinatoric probabilities where the probability of a single outcome is $p^{m} q^{n-m}$.

Ex: \quad Suppose $p=P(1)=0.4$ for a stream of bits in a communication system. Find the probability of 4 out of 6 bits being 1's.

SoL'n: There are ${ }_{6} C_{4}$ patterns of 6 bits with four bits $=1$. The patterns are 001111, 010111, 011011, ... , 111100 .

The probability of a particular one of these patterns occurring as the outcome is $p^{4} q^{2}$. All of the patterns have the same probability, however, so our answer is given by the binomial distribution:

$$
P(41 \text { 's in } 6 \text { bits })=\frac{6!}{(6-4)!4!} p^{4} q^{2}=15(0.4)^{4}(1-0.4)^{2}
$$

