**THM:** For any probability density function and any real number k > 0

$$P(|X-\mu| \ge k\sigma) \le \frac{1}{k^2} \text{ or } P(|X-\mu| \le k\sigma) \ge \frac{1}{k^2}$$

- **NOTE:** This theorem gives an upper bound on how much of the probability density can lie farther than  $k\sigma$  from the mean value. Thus, the probability density is constrained in how far its tails can lie from the mean value on a scale measured by standard deviations.
- **NOTE:** This theorem is only useful for values of k > 1, since probability is always less than or equal to unity, and the theorem is most useful for larger values of k. For example, all but one-ninth of the probability lies within three standard deviations of the mean, regardless of what the probability density function happens to be.
- **PROOF:** We start with the definition of standard deviation:

$$\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx \, .$$

The figure below shows a generic probability density function, f(x).



For the calculation of  $\sigma^2$ , we will multiply f(x) by the quadratic function  $(x-\mu)^2$  added to the graph below.



The product  $(x-\mu)^2 f(x)$  is shown below, and the area under this curve, (i.e., the integral of  $(x-\mu)^2 f(x)$ ), shown in brown, is the value of  $\sigma^2$ .



We split the integral for  $\sigma^2$  into regions within  $k\sigma$  of the mean (center region) and without  $k\sigma$  of the mean (gray regions) giving us the following result.

$$\sigma^{2} = \int_{-\infty}^{\mu - k\sigma} (x - \mu)^{2} f(x) dx + \int_{\mu - k\sigma}^{\mu + k\sigma} (x - \mu)^{2} f(x) dx + \int_{\mu + k\sigma}^{\infty} (x - \mu)^{2} f(x) dx.$$

Since the quantities being integrated are all non-negative, if we were to delete the middle integral (i.e., the integral for values within  $k\sigma$  of the mean) we would have the following result:

$$\sigma^2 \ge \int_{-\infty}^{\mu-k\sigma} (x-\mu)^2 f(x) dx + \int_{\mu+k\sigma}^{\infty} (x-\mu)^2 f(x) dx.$$

In other words, the areas under the side portions are less than the entire area. We obtain an even smaller area on the sides if we replace  $(x - \mu)^2$  with a smaller multiplier, namely  $k^2\sigma^2$ . That is, for the integrals in the above equation we have  $(x - \mu)^2 \ge k^2\sigma^2$ , so we can write the following inequality:

$$\sigma^2 \ge \int_{-\infty}^{-k\sigma} k^2 \sigma^2 f(x) dx + \int_{k\sigma}^{\infty} k^2 \sigma^2 f(x) dx.$$

The figure below shows the right-hand side of this equation as red areas that are clearly smaller than the original side areas.



At this point, we factor out the  $k^2\sigma^2$  from the integrals to obtain

$$\sigma^{2} \ge k^{2} \sigma^{2} \left( \int_{-\infty}^{-k\sigma} f(x) dx + \int_{k\sigma}^{\infty} f(x) dx \right)$$

or, if we divide both sides by  $\sigma$ ,

$$1 \ge k^2 \left( \int_{-\infty}^{-k\sigma} f(x) dx + \int_{k\sigma}^{\infty} f(x) dx \right).$$

The value in parentheses is now a probability, and we have

$$1 \ge k^2 P(|X - \mu| \ge k\sigma)$$

or, if we divide both sides by  $k^2$ ,

$$\frac{1}{k^2} \ge P(|X-\mu| \ge k\sigma).$$

This result is equivalent to the theorem statement, and our proof is finished.

One might wonder the bound is achievable, and the answer for k > 1 is yes. The distribution shown below achieves the bound by putting as much of the probability as possible (i.e.,  $1/2k^2$ ) at points masses located at distance  $k\sigma$ from  $\mu$ . Thus, we have a discrete distribution:



We verify that the calculated variance is indeed  $\sigma^2$ :

$$\sigma^{2} = \sum_{x_{i}} (x_{i} - \mu)^{2} P(x_{i}) = (-k\sigma)^{2} \frac{1}{2k^{2}} + 0 \cdot (1 - \frac{1}{k^{2}}) + (k\sigma)^{2} \frac{1}{2k^{2}},$$

which simplifies to  $\sigma^2 = \sigma^2$ , as required.

**REF:** Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, and Keying Ye, *Probability and Statistics for Engineers and Scientists*, 8th Ed., Upper Saddle River, NJ: Prentice Hall, 2007.