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THM: For any probability density function and any real number k > 0 

  
P X −µ ≥ kσ( ) ≤ 1

k2
  or  

  
P X −µ ≤ kσ( ) ≥ 1

k2
 

NOTE:  This theorem gives an upper bound on how much of the probability density 
can lie farther than kσ from the mean value.  Thus, the probability density is 
constrained in how far its tails can lie from the mean value on a scale 
measured by standard deviations. 

NOTE:  This theorem is only useful for values of k > 1, since probability is always 
less than or equal to unity, and the theorem is most useful for larger values 
of k.  For example, all but one-ninth of the probability lies within three 
standard deviations of the mean, regardless of what the probability density 
function happens to be. 

PROOF:  We start with the definition of standard deviation: 

  
σ2 = (x −µ)2 f (x)dx

−∞
∞
∫ . 

The figure below shows a generic probability density function, f(x). 
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For the calculation of σ2, we will multiply   f (x)  by the quadratic function 

  (x −µ)2 added to the graph below. 

 

The product   (x −µ)2 f (x)  is shown below, and the area under this curve, 

(i.e., the integral of   (x −µ)2 f (x) ), shown in brown, is the value of σ2. 

 

We split the integral for σ2 into regions within kσ of the mean (center 
region) and without kσ of the mean (gray regions) giving us the following 
result. 

  
σ2 = (x −µ)2 f (x)dx

−∞
µ−kσ
∫ + (x −µ)2 f (x)dx

µ−kσ
µ+kσ
∫ + (x −µ)2 f (x)dx

µ+kσ
∞
∫ . 
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Since the quantities being integrated are all non-negative, if we were to 
delete the middle integral (i.e., the integral for values within kσ of the mean) 
we would have the following result: 

  
σ2 ≥ (x −µ)2 f (x)dx

−∞
µ−kσ
∫ + (x −µ)2 f (x)dx

µ+kσ
∞
∫ . 

In other words, the areas under the side portions are less than the entire area.  
We obtain an even smaller area on the sides if we replace (x – µ)2 with a 
smaller multiplier, namely k2σ2.  That is, for the integrals in the above 

equation we have   (x −µ)2 ≥ k2σ2 , so we can write the following inequality: 

  
σ2 ≥ k2σ2 f (x)dx

−∞
−kσ
∫ + k2σ2 f (x)dx

kσ
∞
∫ . 

The figure below shows the right-hand side of this equation as red areas that 
are clearly smaller than the original side areas. 

 

At this point, we factor out the k2σ2 from the integrals to obtain 

  
σ2 ≥ k2σ2 f (x)dx

−∞
−kσ
∫ + f (x)dx

kσ
∞
∫⎛

⎝⎜
⎞
⎠⎟

 

or, if we divide both sides by σ, 

  
1≥ k2 f (x)dx

−∞
−kσ
∫ + f (x)dx

kσ
∞
∫⎛

⎝⎜
⎞
⎠⎟

. 

The value in parentheses is now a probability, and we have 

  
1≥ k2P X −µ ≥ kσ( )  
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or, if we divide both sides by k2, 

  

1

k2
≥ P X −µ ≥ kσ( ) . 

This result is equivalent to the theorem statement, and our proof is finished. 

 

One might wonder the bound is achievable, and the answer for k > 1 is yes.  
The distribution shown below achieves the bound by putting as much of the 
probability as possible (i.e., 1/2k2) at points masses located at distance kσ  
from µ.  Thus, we have a discrete distribution: 

  

P( X ) or f (x) =

1
2k2

x = µ − kσ

1− 1
k2

x = 0

1
2k2

x = µ − kσ

0 otherwise

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

. 

 

We verify that the calculated variance is indeed σ2: 

  

σ2 = (xi −µ)2 P(xi )
xi

∑ = (−kσ)2 1

2k2
+ 0 ⋅(1− 1

k2
)+ (kσ)2 1

2k2
, 

which simplifies to σ2 = σ2, as required. 
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