Ex: 7-segment LED displays are sometimes used to display a character instead one digit. How many unique patterns can two-digits of 7 -segment LED's display? Count all the possible patterns of each segment being on or off, including all segments off and all segments on.

SOL'N: There are two ways to view this calculation: that patterns correspond to binary numbers with 0 's representing segments that are off and 1's representing segments that are on, or that we can sum the counts of how many patterns have $0,1,2, \ldots, 14$ segments on.
Viewing patterns as equivalent to binary numbers, we have 14 digit numbers yielding $2^{14}=16,384$ possible patterns.

If, instead, we count the number of patterns with $0,1,2, \ldots, 14$ segments on, we use combinatoric coefficients (since we only care which segments are on-not which segment turns on first). We have 14 segments chosen m at a time:

$$
\begin{aligned}
& \quad \text { \# patterns }=\sum_{m=0}^{14}{ }_{14} C_{m} \text { where }{ }_{14} C_{m}=\frac{14!}{(14-m)!m!} \\
& \text { or, since }{ }_{n} \mathrm{C}_{m}={ }_{n} \mathrm{C}_{n-m} \\
& \text { \# patterns }=2\left(\frac{14!}{14!0!}+\frac{14!}{13!1!}+\frac{14!}{12!2!}+\frac{14!}{11!3!}+\frac{14!}{10!4!}+\frac{14!}{9!5!}+\frac{14!}{8!6!}\right)+\frac{14!}{7!7!} . \\
& \text { or } \quad \text { \# patterns }=2(1+14+91+364+1001+2002+3003)+3432 \\
& \text { or } \quad \text { \# patterns }=2()+3432=2(6476)+3432=16,384
\end{aligned}
$$

NOTE: There is a connection between 2^{n} and combinatorial coefficients, namely the binomial expansion:

$$
\begin{aligned}
& (1+x)^{n}=\sum_{i=0}^{n}{ }_{n} C_{i} 1^{n-i} x^{i} \\
& \text { Plugging } x=1, n=14 \text { gives } 2^{14}={ }_{14} \mathrm{C}_{0}+{ }_{14} \mathrm{C}_{1}+\ldots+{ }_{14} \mathrm{C}_{14}
\end{aligned}
$$

