EX: \quad Given joint probability density function $f(x, y)=1$ on the area of the x, y-plane shown below, find the conditional probability density function $f(y \mid x=2)$.

SOL'N: The illustration below shows a 3-dimensional view of $f(x, y)$.

The conditional probability, $f(y \mid x=2)$, is equal to the cross-section of $f(x, y)$ in the y direction at $x=2$ scaled vertically to make the area equal to one. The illustration below shows the cross-section at $x=2$.

The width of the cross-section is apparent in the following top view of the support (or footprint) of $f(x, y)$ in the $x y$-plane.

This cross-section is a function of y as shown below.

We scale the figure vertically to obtain area equal to one. That is, we multiply by $9 / 4$:

If we take a purely mathematical approach to finding $f(y \mid x=2)$, we use the definition of conditional probability:

$$
f(y \mid x=2)=\left\{\begin{array}{cc}
\frac{f(x=2, y)}{\int_{y=0}^{y=2 x / 9=4 / 9} f(x=2, y) d y} & 0 \leq \mathrm{y} \leq 4 / 9 \\
0 & \text { otherwise }
\end{array}\right.
$$

Substituting $f(x=2, y)=1$, we complete the calculation:

$$
f(y \mid x=2)=\left\{\begin{array}{cc}
\frac{1}{\int_{y=0}^{y=2 x / 9=4 / 9} 1 d y=\left.y\right|_{y=0} ^{y=4 / 9}=\frac{4}{9}}=\frac{9}{4} & 0 \leq y \leq 4 / 9 \\
0 & \text { otherwise }
\end{array}\right.
$$

The equation for $f(y \mid x=2)$ also captures the information in the above plot:

$$
f(y \mid x=2)= \begin{cases}\frac{9}{4} & 0 \leq y \leq \frac{4}{9} \\ 0 & \text { otherwise }\end{cases}
$$

