Ex: A joint probability density function is defined as follows:

$$
f(x, y)= \begin{cases}\frac{1}{\pi} & x^{2}+y^{2} \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Find the conditional probability $f\left(x \left\lvert\, y=\frac{1}{2}\right.\right)$.

SoL'N: The region, $x^{2}+y^{2} \leq 1$, on which $f(x, y) \neq 0$ is called the support of $f(x, y)$. It is a circle of radius one, centered on the origin, as shown below. The diagram also shows the horizontal segment that is the support for the crosssection that forms the basis for $f\left(x \left\lvert\, y=\frac{1}{2}\right.\right)$.

The diagram shows that the cross-section extends from $-\sqrt{3} / 2$ to $\sqrt{3} / 2$. The conditional probability, $f\left(x \left\lvert\, y=\frac{1}{2}\right.\right)$, is a scaled version of the cross section of $f(x, y)$ at $y=1 / 2$. The illustration, below, shows the 3 -dimensional shape of $f(x, y)$ and the cross section in the x direction at $y=1 / 2$.

The probability density function that is $f\left(x \left\lvert\, y=\frac{1}{2}\right.\right)$ is the above crosssection scaled vertically to have an area equal to one. Since the cross-section is rectangular, this means the height will be scaled up to a value of $1 /$ width where the width is $2 \sqrt{3} / 2=\sqrt{3}$:

$$
f\left(x \left\lvert\, y=\frac{1}{2}\right.\right)=\left\{\begin{array}{cc}
1 / \sqrt{3} & -\sqrt{3} / 2 \leq x \leq \sqrt{3} / 2 \\
0 & \text { otherwise }
\end{array}\right.
$$

Taking a more strictly mathematical approach, we would integrate to find the area of the cross section and divide the cross-section by the result:

$$
f\left(x \left\lvert\, y=\frac{1}{2}\right.\right)=\left\{\begin{array}{cc}
\frac{f\left(x, y=\frac{1}{2}\right)}{\int_{-\sqrt{3} / 2}^{\sqrt{3} / 2} f\left(x, y=\frac{1}{2}\right) d x} & -\sqrt{3} / 2 \leq x \leq \sqrt{3} / 2 \\
0 & \text { otherwise }
\end{array}\right.
$$

or

$$
f\left(x \left\lvert\, y=\frac{1}{2}\right.\right)=\left\{\begin{array}{cc}
\frac{1}{\pi} & -\sqrt{3} / 2 \leq x \leq \sqrt{3} / 2 \\
\int_{-\sqrt{3} / 2}^{\sqrt{3} / 2} \frac{1}{\pi} d x & \\
0 & \text { otherwise }
\end{array}\right.
$$

The integral is the difference of the limits multiplied by $1 / \pi$.

$$
f\left(x \left\lvert\, y=\frac{1}{2}\right.\right)=\left\{\begin{array}{cc}
\frac{\frac{1}{\pi}}{2 \frac{\sqrt{3}}{2} \frac{1}{\pi}} & -\sqrt{3} / 2 \leq x \leq \sqrt{3} / 2 \\
0 & \text { otherwise }
\end{array}\right.
$$

Canceling out terms yields the same result as before:

$$
f\left(x \left\lvert\, y=\frac{1}{2}\right.\right)=\left\{\begin{array}{cc}
1 / \sqrt{3} & -\sqrt{3} / 2 \leq x \leq \sqrt{3} / 2 \\
0 & \text { otherwise }
\end{array}\right.
$$

