Ex: A joint probability density function is defined as follows:

$$
f(x, y)=\left\{\begin{array}{cc}
x-y & 3 \leq x \leq 4 \text { and } 0 \leq y \leq x \\
0 & \text { otherwise }
\end{array}\right.
$$

Find the conditional probability $f(y \mid x=3)$.

SOL'N: The region, $3 \leq y \leq 4$ and $0 \leq y \leq x$, on which $f(x, y) \neq 0$ is the support of $f(x, y)$. It is a trapezoid, as shown below. The diagram also shows the vertical segment for $x=3$.

The illustration, below, shows the 3-dimensional shape of $f(x, y)$. The figure also shows cross-sections at $x=3$. The density function for $f(y \mid x=3)$ is equal to the area of the cross-section of $f(x, y)$ at $x=3$ scaled vertically to have an area equal to one.

Mathematically, we are using the values of $f(x=3, y)$.

$$
f(x=3, y)=\left\{\begin{array}{cc}
3-y & 0 \leq y \leq 3 \\
0 & \text { otherwise }
\end{array}\right.
$$

The vertical scaling is taken care of by the integral in the denominator of the equation for conditional probability.

$$
f(y \mid x=3)=\frac{f(x=3, y)}{\int_{y=0}^{y=3} f(x=3, y) d y}
$$

or

$$
f(y \mid x=3)=\frac{3-y}{\int_{y=0}^{y=3}(3-y) d y}
$$

The integral in the denominator is the area of the triangular cross-section at $x=3$. We may compute it as one-half base times height or by integrating:

$$
\int_{y=0}^{y=3}(3-y) d y=\left.\left(3 y-\frac{y^{2}}{2}\right)\right|_{y=0} ^{y=3}=9-\frac{9}{2}=\frac{9}{2}
$$

Substituting this value into our earlier equation for $f(y \mid x=3)$ gives our answer:

$$
f(y \mid x=3)=\frac{3-y}{9 / 2}=\frac{2}{9}(3-y)
$$

