EX: If we have the following condition, what is the value of correlation, $\rho_{X Y}$?

$$
\sigma_{X Y}=\sigma_{X} \sigma_{Y}
$$

SOL'N: The covariance, $\sigma_{X}{ }_{Y}$, appears in the numerator of the definition of correlation:

$$
\rho_{X Y} \equiv \frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}}
$$

Substituting for the covariance yields the following:

$$
\rho_{X Y} \equiv \frac{\sigma_{X} \sigma_{Y}}{\sigma_{X} \sigma_{Y}}=1
$$

The correlation is equal to one, meaning that X and Y are deterministically related.

This is in contrast to independent random variables that satisfy a similar form of equation for means:

$$
\mu_{X Y}=\mu_{X} \mu_{Y}
$$

Note that for independent random variables, the covariance is zero:

$$
\sigma_{X Y}=0 \text { for } X \text { and } Y \text { independent }
$$

