EX: Find the correlation, ρ_{X}, for the following joint probability density function:

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{x+y}{3} & 1 \leq x \leq 2 \text { and } 1 \leq y \leq 2 \\
0 & \text { otherwise }
\end{array}\right.
$$

The following information is given:

$$
\begin{aligned}
& E(X Y)=\frac{7}{10} \\
& f_{X}(x)= \begin{cases}\frac{x}{3}+\frac{1}{2} & 1 \leq x \leq 2 \\
0 & \text { otherwise }\end{cases} \\
& f_{Y}(y)= \begin{cases}\frac{y}{3}+\frac{1}{2} & 1 \leq y \leq 2 \\
0 & \text { otherwise }\end{cases} \\
& \mu_{X}=\mu_{Y}=\frac{55}{36} \quad \sigma_{X Y}=\frac{-1}{1296}
\end{aligned}
$$

SOL'N: We proceed with the calculation of variances.

$$
E\left(X^{2}\right)=\int_{-\infty}^{\infty} x^{2} f_{X}(x) d x=\int_{0}^{1} x^{2}\left(\frac{x}{3}+\frac{1}{2}\right) d x=\frac{29}{12}
$$

Subtract the mean squared to find the variance:

$$
\sigma_{X}^{2}=E\left(X^{2}\right)-\mu_{X}^{2}=\frac{29}{12}-\left(\frac{55}{36}\right)^{2}=\frac{107}{1296}
$$

By symmetry the variance is the same for Y.
Now we plug values into the formula for correlation:

$$
\rho_{X Y} \equiv \frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}}=\frac{-1 / 1296}{\sqrt{107 / 1296} \sqrt{107 / 1296}}=\frac{-1}{107}
$$

The correlation is nonzero but very small.

