EX:

Plot the joint probability density function, $f(x, y)$, for the joint cumulative distribution function, $F(x, y)$, shown above in a cutaway view. Assume that X and Y are independent. The following information is also given:

$$
F(x, y)=\left\{\begin{array}{cc}
0 & x<3 / 2 \text { or } y<0 \\
\frac{y}{3} & x=\frac{5}{2} \text { and } 0<y<2 \\
\frac{x-3 / 2}{3} & \frac{3}{2}<x<3 \text { and } y=1 \\
1 & x>3 \text { and } y>2
\end{array}\right.
$$

SOL'N: $\quad F(x, y)$ equals the volume of $f(x, y)$ to the left of x and in front of, (i.e., less than), y. Since $F(x, y)=1$ for $x>3$ and $y>2$, all of the volume of $f(x, y)$ lies in the area where $x \leq 3$ and $y \leq 2$. Similarly, since $F(x, y)=0$ for $x<3 / 2$ or $y<0$, all of the volume of $f(x, y)$ lies in the area where $x \geq 3 / 2$ and $y \geq 0$.

From the linear growth of $F(x, y)$ in the x direction in the area where $f(x, y)$ is nonzero and on the ramp for $3 / 2 \leq x \leq 3$ for $y>2$, it follows that the area of the cross section of $F(x, y)$ in the y direction is constant as x changes. Similarly, from the linear growth of $F(x, y)$ in the y direction in the area where $f(x, y)$ is nonzero and on the ramp for $0 \leq y \leq 2$ for $x>3$, it follows that the area of the cross section of $F(x, y)$ in the x direction is constant as y changes.

The simplest solution for $F(x, y)$ is a box of constant height over the region where $f(x, y)$ is nonzero. To achieve a volume of one, the height of the box should be $1 / 3$:

$$
f(x, y)= \begin{cases}\frac{1}{3} & \frac{3}{2}<x<3 \text { and } 0<y<2 \\ 0 & \text { otherwise }\end{cases}
$$

If we integrate this $f(x, y)$, we get a complete description of $F(x, y)$:

$$
F(x, y)=\left\{\begin{array}{cc}
\frac{x-3 / 2}{3} \cdot y & \frac{3}{2}<x<3 \text { and } 0<y<2 \\
0 & \text { otherwise }
\end{array}\right.
$$

Curiously, another surface also works. This surface has cross sections that have linear slopes on top in both the x and y directions.

$$
f(x, y)= \begin{cases}\frac{2}{3}\left(\frac{x-\frac{3}{2}}{\frac{3}{2}}\right)\left(\frac{y}{2}\right)+\frac{2}{3}\left(\frac{3-x}{\frac{3}{2}}\right)\left(\frac{2-y}{2}\right) & \frac{3}{2}<x<3 \text { and } 0<y<2 \\ 0 & \text { otherwise }\end{cases}
$$

