Ex: For the following joint probability density function, plot the area on the x, y-plane where $F(x, y)=1$. (In other words, plot the footprint of the area where $F(x, y)=1$.)

$$
f(x, y)= \begin{cases}\frac{1}{\pi} & x^{2}+y^{2} \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

SOL'N: $\quad f(x, y)$ is a cylinder of height $1 / \pi$, centered on the origin:

$F(x, y)$ equals the volume of $f(x, y)$ to the left of x and in front of, (i.e., less than), y. The illustration, above, shows two walls at x and $y . F(x, y)=1$ for the x and y shown, since all the volume of $f(x, y)$ is left of x and in front of y. The region of the where $F(x, y)=1$ becomes apparent in a top view:

All of the volume of $f(x, y)$ will be to the left of x for $x>1$ and in front of y for $y>1$. Thus, the region where $F(x, y)=1$ is $x>1$ and $y>1$. Note that both x and y conditions must be true.

